G.D. Birkhoff a posé, par analogie avec le cas classique des équations différentielles, le problème de Riemann-Hilbert pour les systèmes “fuchsiens” aux
G.D. Birkhoff extended the classical Riemann-Hilbert problem for differential equations to the case of “fuchsian” linear
@article{AIF_2000__50_4_1021_0, author = {Sauloy, Jacques}, title = {Syst\`emes aux $q$-diff\'erences singuliers r\'eguliers : classification, matrice de connexion et monodromie}, journal = {Annales de l'Institut Fourier}, pages = {1021--1071}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {4}, year = {2000}, doi = {10.5802/aif.1784}, mrnumber = {2001m:39043}, zbl = {0957.05012}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.1784/} }
TY - JOUR AU - Sauloy, Jacques TI - Systèmes aux $q$-différences singuliers réguliers : classification, matrice de connexion et monodromie JO - Annales de l'Institut Fourier PY - 2000 SP - 1021 EP - 1071 VL - 50 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1784/ DO - 10.5802/aif.1784 LA - fr ID - AIF_2000__50_4_1021_0 ER -
%0 Journal Article %A Sauloy, Jacques %T Systèmes aux $q$-différences singuliers réguliers : classification, matrice de connexion et monodromie %J Annales de l'Institut Fourier %D 2000 %P 1021-1071 %V 50 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1784/ %R 10.5802/aif.1784 %G fr %F AIF_2000__50_4_1021_0
Sauloy, Jacques. Systèmes aux $q$-différences singuliers réguliers : classification, matrice de connexion et monodromie. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1021-1071. doi : 10.5802/aif.1784. https://www.numdam.org/articles/10.5802/aif.1784/
[1] On the Linear Ordinary q-Difference Equations, Ann. Math., série 2, 30, n° 2 (1929), 195-205. | JFM | MR
,[2] Linear q-Difference Equations, Bull. Amer. Math. Soc., (1931), 361-399. | JFM | MR | Zbl
,[3] Ordinary Differential Equations, in Dynamical Systems, Encyclopaedia of Mathematical Sciences, vol. 1, Springer-Verlag, 1980. | Zbl
,[4] Groupes algébriques linéaires et théorie de Galois différentielle, Cours 3e cycle, Université Paris VI, 1986.
,[5] Sur les équations fonctionnelles aux q-différences, Aequationes Math., 43 (1992), 159-176. | EuDML | MR | Zbl
,[6] The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Amer. Acad., 49 (1913), 521-568. | JFM
,[7] Formal Theory of Irregular Linear Difference Equations, Acta Math., 54 (1930), 205-246. | JFM | MR
,[8] Théorie de Galois différentielle, livre en préparation, 1999.
, ,[9] The General Theory of Linear q-difference Equations, Amer. J. Math., 34 (1912), 147-168. | JFM | MR
,[10] Équations différentielles à points singuliers réguliers, Lecture Notes in Math., Springer-Verlag, 163 (1970). | MR | Zbl
,[11] Galois Groups and Connection Matrices of q-difference Equations, Electronic Research Announcements of the A.M.S., vol. 1, issue 1 (1995). | MR | Zbl
,[12] Basic hypergeometric series, Encyclopedia of Mathematics, vol. 35, Cambridge University Press, 1990. | MR | Zbl
, ,[13] Ordinary Differential Equations, Dover Publications, 1956.
,[14] From Gauss to Painlevé, Braunschweig, Vieweg, 1991.
, , , ,[15] Elliptic Functions, Springer-Verlag, 1987. | MR | Zbl
,[16] Multisommabilité des séries entières solutions formelles d'une équation aux q-différences linéaire analytique, article en préparation, 1999. | Numdam | Zbl
, ,[17] Tata Lectures on Theta, vol I, Birkhäuser, 1983. | Zbl
,[18] Rapport du jury de l'agrégation de mathématiques, Ministère de l'Éducation Nationale, Centre National de Documentation Pédagogique, 1994.
(éd.),[19] Galois theory of difference equations, Lecture Notes in Math., Springer-Verlag, 1666 (1997). | MR | Zbl
, ,[20] Collected Works, Chelsea, 1927.
,[21] About the growth of entire functions solutions to linear algebraic q-difference equations, Annales Fac. Sciences de Toulouse, 6, vol. I, n° 1 (1992), 53-94. | Numdam | MR | Zbl
,[22] Fonctions θ et équations aux q-différences, non publié, Strasbourg, 1990.
,[23] Matrice de connexion d'un système aux q-différences confluant vers un système différentiel et matrices de monodromie, Preprint, Université Paul Sabatier, Toulouse, 1998.
,[24] Théorie de Galois des équations aux q-différences fuchsiennes, thèse, Université Paul Sabatier, Toulouse, 1999.
,[25] Galois Theory of Fuchsian q-differences Equations, article en préparation, 2000.
,[26] Handbuch der Theorie der linearen Differentialgleichungen, Teubner, 1895. | JFM
,[27] Analytic Theory of Linear q-Difference Equations, Acta Math., 61 (1933), 1-38. | JFM | Zbl
,[28] Asymptotic Expansions for Ordinary Differential Equations, Dover Publications, 1965. | MR | Zbl
,[29] A course of Modern Analysis, Cambridge University Press, 1927. | JFM
, ,- Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 32 (2024) no. 5, p. 969 | DOI:10.5802/afst.1760
- Classification analytique locale des équations aux q-différences de pentes arbitraires, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 3, p. 647 | DOI:10.5802/afst.1784
- Meromorphic solutions of linear q-difference equations, Journal of Mathematical Analysis and Applications, Volume 532 (2024) no. 1, p. 127939 | DOI:10.1016/j.jmaa.2023.127939
- Remarks on q-difference opers arising from quantum toroidal algebras, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 48, p. 485201 | DOI:10.1088/1751-8121/ad8e9c
- Nondecreasing bounded continuous solutions of a q-difference equation, Miskolc Mathematical Notes, Volume 25 (2024) no. 2, p. 1075 | DOI:10.18514/mmn.2024.4397
- A Density Theorem for the Difference Galois Groups of Regular Singular Mahler Equations, International Mathematics Research Notices, Volume 2023 (2023) no. 1, p. 536 | DOI:10.1093/imrn/rnab277
- Analytical study of the pantograph equation using Jacobi theta functions, Journal of Approximation Theory, Volume 296 (2023), p. 105974 | DOI:10.1016/j.jat.2023.105974
- Quantum K-theory and q-difference Equations, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 10, p. 1677 | DOI:10.1007/s10114-022-1616-2
- Length derivative of the generating function of walks confined in the quarter plane, Confluentes Mathematici, Volume 13 (2022) no. 2, p. 39 | DOI:10.5802/cml.77
- An algorithm to recognize regular singular Mahler systems, Mathematics of Computation (2022) | DOI:10.1090/mcom/3758
- Intrinsic Approach to Galois Theory of 𝑞-Difference Equations, Memoirs of the American Mathematical Society, Volume 279 (2022) no. 1376 | DOI:10.1090/memo/1376
- Asymptotics and Confluence for Some Linear q-Difference–Differential Cauchy Problem, The Journal of Geometric Analysis, Volume 32 (2022) no. 3 | DOI:10.1007/s12220-021-00820-z
- Hiroshi Umemura et les mathématiques françaises, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 29 (2021) no. 5, p. 1007 | DOI:10.5802/afst.1655
- The space of monodromy data for the Jimbo–Sakai family ofq-difference equations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 29 (2021) no. 5, p. 1119 | DOI:10.5802/afst.1659
- Galois theories of q-difference equations: comparison theorems, Confluentes Mathematici, Volume 12 (2021) no. 2, p. 11 | DOI:10.5802/cml.66
- On the Local Structure of Mahler Systems, International Mathematics Research Notices, Volume 2021 (2021) no. 13, p. 9937 | DOI:10.1093/imrn/rnz349
- Formal confluence of quantum differential operators, Pacific Journal of Mathematics, Volume 292 (2018) no. 2, p. 427 | DOI:10.2140/pjm.2018.292.427
- Meromorphic tensor equivalence for Yangians and quantum loop algebras, Publications mathématiques de l'IHÉS, Volume 125 (2017) no. 1, p. 267 | DOI:10.1007/s10240-017-0089-9
- An Introduction to Difference Galois Theory, Symmetries and Integrability of Difference Equations (2017), p. 359 | DOI:10.1007/978-3-319-56666-5_8
- q-Borel-Laplace summation for q–difference equations with two slopes, Journal of Difference Equations and Applications, Volume 22 (2016) no. 10, p. 1501 | DOI:10.1080/10236198.2016.1209192
- Isomonodromic deformation of 𝑞-difference equations and confluence, Proceedings of the American Mathematical Society, Volume 145 (2016) no. 3, p. 1109 | DOI:10.1090/proc/13173
- Building Meromorphic Solutions ofq-Difference Equations Using a Borel–Laplace Summation, International Mathematics Research Notices, Volume 2015 (2015) no. 15, p. 6562 | DOI:10.1093/imrn/rnu137
- q-Deformation of meromorphic solutions of linear differential equations, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 5734 | DOI:10.1016/j.jde.2015.07.010
- On classical irregular q-difference equations, Compositio Mathematica, Volume 148 (2012) no. 5, p. 1624 | DOI:10.1112/s0010437x12000292
- Generalized basic hypergeometric equations, Inventiones mathematicae, Volume 184 (2011) no. 3, p. 499 | DOI:10.1007/s00222-010-0294-3
- Small Divisor Problem in Dynamical Systems and Analytic Solutions of a q-Difference Equation with a Singularity at the Origin, Results in Mathematics, Volume 58 (2010) no. 3-4, p. 337 | DOI:10.1007/s00025-010-0060-2
- Double Affine Hecke Algebras and Bispectral Quantum Knizhnik-Zamolodchikov Equations, International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp165
- Approximants de Padé des q-Polylogarithmes, Diophantine Approximation, Volume 16 (2008), p. 221 | DOI:10.1007/978-3-211-74280-8_12
- Leonhard Euler and a 𝑞-analogue of the logarithm, Proceedings of the American Mathematical Society, Volume 137 (2008) no. 5, p. 1663 | DOI:10.1090/s0002-9939-08-09374-x
- La filtration canonique par les pentes d'un module aux 𝐪-différences, Comptes Rendus. Mathématique, Volume 334 (2002) no. 1, p. 11 | DOI:10.1016/s1631-073x(02)02179-9
Cité par 30 documents. Sources : Crossref