Topologie du feuilletage fortement stable
Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 981-993.

Soient X une variété de Hadamard de courbure -1 et Γ un groupe d’isométries non élémentaire. Nous montrons qu’il y a équivalence entre la non-arithméticité du spectre des longueurs de ΓX, le mélange topologique du flot géodésique et l’existence d’une feuille dense pour le feuilletage fortement stable.

Let X be a Hadamard manifold with curvature -1 and Γ be a non elementary isometry group acting freely properly discontinuously on X. We are interested in the topology of the leaves of the strong stable foliation on T1(ΓX). We establish equivalences between the non arithmeticity of Γ (i.e. the group generated by the length spectrum of ΓX is dense in ), the existence of a dense leaf in the non wandering set ΩX of and the topological mixing of the geodesic flow on its non wandering set. Our proof uses the action of Γ on X() and the relation between cross-ratio and length spectrum.In the case when Γ is not arithmetic, we prove that Γ is geometrically finite if and only if leaves in ΩX are dense or are associated to bounded parabolic fixed points (such leaves are closed).

@article{AIF_2000__50_3_981_0,
     author = {Dal'bo, Fran\c{c}oise},
     title = {Topologie du feuilletage fortement stable},
     journal = {Annales de l'Institut Fourier},
     pages = {981--993},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {3},
     year = {2000},
     doi = {10.5802/aif.1781},
     mrnumber = {2001i:37045},
     zbl = {0965.53054},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.1781/}
}
TY  - JOUR
AU  - Dal'bo, Françoise
TI  - Topologie du feuilletage fortement stable
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 981
EP  - 993
VL  - 50
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1781/
DO  - 10.5802/aif.1781
LA  - fr
ID  - AIF_2000__50_3_981_0
ER  - 
%0 Journal Article
%A Dal'bo, Françoise
%T Topologie du feuilletage fortement stable
%J Annales de l'Institut Fourier
%D 2000
%P 981-993
%V 50
%N 3
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1781/
%R 10.5802/aif.1781
%G fr
%F AIF_2000__50_3_981_0
Dal'bo, Françoise. Topologie du feuilletage fortement stable. Annales de l'Institut Fourier, Tome 50 (2000) no. 3, pp. 981-993. doi : 10.5802/aif.1781. https://www.numdam.org/articles/10.5802/aif.1781/

[B] M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, L'Ens. Math., 41 (1995), 63-102. | MR | Zbl

[Bo1] B. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. Jour., Vol. 77, n° 1 (1995), 229-274. | MR | Zbl

[Bo2] B. Bowditch, Relatively hyperbolic groups, Preprint 1999.

[D] F. Dal'Bo, Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Bras. Math., Vol. 30, n° 2 (1999). | Zbl

[DP] F. Dal'Bo, M. Peigné, Some negatively curved manifolds with cusps, mixing and counting, J. reine angew Math., 497 (1998), 141-169. | MR | Zbl

[DS] F. Dal'Bo, A. Starkov, On a classification of limit points of infinitely generated Schottky groups, Prépublication Rennes, 1999. | Zbl

[E1] P. Eberlein, Geodesic flows on negatively curved manifolds, I, Ann. of Math., Vol. 95, n° 3 (1973), 492-510. | MR | Zbl

[E2] P. Eberlein, Geodesic flows on negatively curved manifolds, II, Trans. of the A.M.S., Vol. 178 (1973), 57-82. | MR | Zbl

[E3] P. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, 1996. | MR | Zbl

[GR] Y. Guivarc'H - A. Raugi, Products of random matrices : convergence theorem, Contemp. Math., Vol. 50 (1986), 31-53. | MR | Zbl

[H] G.A. Hedlund, Fuchsian group and transitive horocycles, Duke Math. J., 2 (1936), 530-542. | JFM | Zbl

[K] I. Kim, Rigidity of rank one symmetric spaces and their product, (à paraître dans Topology). | Zbl

[NW] P. Nicholls, P. Waterman, Limit points via Schottky groups, LMS Lectures Notes, 173 (1992), 190-195. | MR | Zbl

[O] J.P. Otal, Sur la géométrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Revista Mathematica Iber. Amer., 8, n° 3 (1992). | MR | Zbl

[S] M. Shub, Stabilité globale des systèmes dynamiques, Astérisque, 56 (1978). | Numdam | MR | Zbl

[S1] A. Starkov, Parabolic fixed points of kleinian groups and the horospherical foliation on hyperbolic manifolds, Int. Journ. of Math., Vol. 8 n° 2 (1997), 289-299. | MR | Zbl

[S2] A. Starkov, Fuchsian groups from the dynamical viewpoint, Jour. of Dyn. and Control System, 1 (1995), 427-445. | MR | Zbl

[T] P. Tukia, Conical limit points and uniform convergence groups, J. reine angew Math., 501 (1998), 71-98. | MR | Zbl

Cité par Sources :