Si est une surface complexe, on peut définir pour chaque entier le schéma de Hilbert , qui est une désingularisation du produit symétrique . On construit ici plus généralement une variété différentiable munie d’une structure presque complexe stable, pour toute variété différentiable de dimension munie d’une structure presque complexe. est une désingularisation du produit symétrique .
If is a complex surface, one has for each the Hilbert scheme , which is a desingularization of the symmetric product . Here we construct more generally a differentiable variety endowed with a stable almost complex structure, for every almost complex fourfold . is a desingularization of the symmetric product .
@article{AIF_2000__50_2_689_0, author = {Voisin, Claire}, title = {On the {Hilbert} scheme of points of an almost complex fourfold}, journal = {Annales de l'Institut Fourier}, pages = {689--722}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {2}, year = {2000}, doi = {10.5802/aif.1769}, mrnumber = {2001k:32048}, zbl = {0954.14002}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1769/} }
TY - JOUR AU - Voisin, Claire TI - On the Hilbert scheme of points of an almost complex fourfold JO - Annales de l'Institut Fourier PY - 2000 SP - 689 EP - 722 VL - 50 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1769/ DO - 10.5802/aif.1769 LA - en ID - AIF_2000__50_2_689_0 ER -
%0 Journal Article %A Voisin, Claire %T On the Hilbert scheme of points of an almost complex fourfold %J Annales de l'Institut Fourier %D 2000 %P 689-722 %V 50 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1769/ %R 10.5802/aif.1769 %G en %F AIF_2000__50_2_689_0
Voisin, Claire. On the Hilbert scheme of points of an almost complex fourfold. Annales de l'Institut Fourier, Tome 50 (2000) no. 2, pp. 689-722. doi : 10.5802/aif.1769. http://www.numdam.org/articles/10.5802/aif.1769/
[1] On the Cohomology of the Hilbert scheme of points, J. Alg. Geom., 5 (1996), 479-511. | MR | Zbl
,[2] On the cobordism class of Hilbert schemes of points on a surface, preprint. | Zbl
, , ,[3] On the cohomology of the Hilbert schemes of points in the plane, Inventiones Math., 87 (1987), 343-352. | Zbl
, ,[4] The cohomology ring of the Hilbert scheme of three points on a smooth projective variety, J. reine angew. Math., 439 (1993), 147-158. | Zbl
, ,[5] Algebraic families on an algebraic surface, Am. J. Math., 10 (1968), 511-521. | MR | Zbl
,[6] The canonical almost complex structure on the manifold of 1-jets of pseudoholomorphic mappings between two almost complex manifolds, in Holomorphic curves in symplectic geometry, M. Audin, J. Lafontaine Eds, Progress in Math. 117, Birkhäuser 1994, 69-74.
,[7] The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann., 286 (1990), 193-207. | MR | Zbl
,[8] Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann., 296 (1993), 235-245. | MR | Zbl
, ,[9] Hilbert scheme of points: Overview of last ten years, Proceedings symposia in Pure Math., Vol. 46 (1987), 297-320. | MR | Zbl
,[10] The local behaviour of holomorphic curves in almost complex 4-manifolds, Jour. Diff. Geo., 34 (1991), 143-164. | MR | Zbl
,[11] Singularities and positivity of intersection of J-holomorphic curves, in Holomorphic curves in symplectic geometry, M. Audin, J. Lafontaine Eds, Progress in Math. 117, Birkhäuser 1994, 191-215.
,[12] Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math., 145 (1997), 379-388. | MR | Zbl
,[13] Some properties of holomorphic curves in almost complex manifolds, in Holomorphic curves in symplectic geometry, M. Audin, J. Lafontaine Eds, Progress in Math. 117, Birkhäuser 1994, 165-189.
,Cité par Sources :