Dimension globale et classe fondamentale d'un espace
Annales de l'Institut Fourier, Tome 49 (1999) no. 1, pp. 333-350.

L’algèbre de Pontryagin d’un espace K-elliptique vérifie le théorème d’Auslander-Buchsbaum-Serre. Nous donnons ici plusieurs caractérisations des espaces K-elliptiques tels que gldim(H*(ΩS;K))< et lorsque (S,K) est dans le domaine d’Anick. Nous introduisons aussi une suite spectrale “impaire des xt” et complétons les résultats obtenus par A. Murillo dans le cas rationnel.

The Pontryagin algebra of a K-elliptic space satisfy the Auslander-Buchsbaum-Serre theorem. We give some characterizations of the K-elliptic spaces with H*(ΩS;K) of finite global dimension and with (S,K) in the Anick range. We also introduce an “xt-odd” spectral sequence and complete the results obtained by A. Murillo in the rational case.

@article{AIF_1999__49_1_333_0,
     author = {Rami, Youssef},
     title = {Dimension globale et classe fondamentale d'un espace},
     journal = {Annales de l'Institut Fourier},
     pages = {333--350},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {1},
     year = {1999},
     doi = {10.5802/aif.1676},
     mrnumber = {2000c:55012},
     zbl = {0920.55009},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.1676/}
}
TY  - JOUR
AU  - Rami, Youssef
TI  - Dimension globale et classe fondamentale d'un espace
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 333
EP  - 350
VL  - 49
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1676/
DO  - 10.5802/aif.1676
LA  - fr
ID  - AIF_1999__49_1_333_0
ER  - 
%0 Journal Article
%A Rami, Youssef
%T Dimension globale et classe fondamentale d'un espace
%J Annales de l'Institut Fourier
%D 1999
%P 333-350
%V 49
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1676/
%R 10.5802/aif.1676
%G fr
%F AIF_1999__49_1_333_0
Rami, Youssef. Dimension globale et classe fondamentale d'un espace. Annales de l'Institut Fourier, Tome 49 (1999) no. 1, pp. 333-350. doi : 10.5802/aif.1676. https://www.numdam.org/articles/10.5802/aif.1676/

[1] D. Anick, Hopf algebras up to homotopy, J. Amer. Math. Soc., 2 (1989), 417-453. | MR | Zbl

[2] L. Bisiaux, Depth and Toomer's invariant, à paraître dans, Topology and its Applications. | Zbl

[3] Y. Félix, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque, 176 (1989). | Numdam | MR | Zbl

[4] Y. Félix and S. Halperin, Rational L-S category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-73. | MR | Zbl

[5] Y. Félix, S. Halperin and J.-M. Lemaire and J.-C. Thomas, Mod p loop space homology, Invent. Math., 95 (1989), 247-262. | MR | Zbl

[6] Y. Félix, S. Halperin and J.-M. Lemaire, The Ganea conjecture and the L-S category of Poincaré duality complexes, Preprint Univ. Nice (1997).

[7] Y. Félix, S. Halperin and J.-C. Thomas, The Homotopy Lie algebra for finite complexes, Publ. I.H.E.S., 56 (1983), 89-96. | Numdam

[8] Y. Félix, S. Halperin and J.-C. Thomas, Gorenstein spaces, Adv. in Maths, 71 (1988), 92-112. | MR | Zbl

[9] Y. Félix, S. Halperin and J.-C. Thomas, Elliptic Hopf algebras, J. London. Math. Soc., (2) 43 (1991), 545-555. | MR | Zbl

[10] Y. Félix, S. Halperin and J.-C. Thomas, Hopf algebres of polynomial growth, J. Algebra, 125 (1989), 408-417. | MR | Zbl

[11] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Preprint Université d'Angers (1997). | Zbl

[12] Y. Félix, S. Halperin and J.-C. Thomas, Hopf algebras and a counterexample to a conjecture of Anick, J. of Algebra, 169 (1994), 176-193. | MR | Zbl

[13] Y. Félix, S. Halperin, C. Jacobson, C. Löfwall and J.-C. Thomas, The radical of the homotopy Lie algebra, Amer. J. Math., 110 (1988), 301-322. | MR | Zbl

[14] W.H. Greub, S. Halperin and J.R. Vanstone, Connexions, Curvatures and Cohomology, Vol. III, Academic Press, New York, 1975. | Zbl

[15] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. | MR | Zbl

[16] S. Halperin, Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra, 83 (1992), 237-282. | MR | Zbl

[17] S. Halperin and J.-M. Lemaire, Notion of category in differential algebra, in Algebraic Topology — Rational Homotopy, Lecture Notes in Mathematics, 1318 (1988), 138-154. | MR | Zbl

[18] I. James, On category, in the sense of Lusternik-Schnirelmann, Topology, 17 (1978), 331-348. | Zbl

[19] A. Murillo, The evaluation map of some Gorenstien algebras, J. Pure. Appl. Algebra, 91 (1994), 209-218. | MR | Zbl

[20] A. Murillo, The Top cohomology class of certain spaces, J. Pure. App. Algebra, 84 (1993), 209-214. | MR | Zbl

[21] J.-P. Serre, Algèbre locale, Multiplicités, Lecture Notes in Mathematics, 11 (1975). | Zbl

[22] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., 47 (1978), 269-331. | Numdam | MR | Zbl

[23] G.H. Toomer, Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z., 138 (1974), 123-143. | MR | Zbl

Cité par Sources :