Lorsqu’un tore
In this paper we consider complex algebraic varieties endowed with an action of a torus
@article{AIF_1998__48_3_861_0, author = {Arabia, Alberto}, title = {Classes {d'Euler} \'equivariantes et points rationnellement lisses}, journal = {Annales de l'Institut Fourier}, pages = {861--912}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {3}, year = {1998}, doi = {10.5802/aif.1642}, mrnumber = {2000b:14061}, zbl = {0899.14023}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.1642/} }
TY - JOUR AU - Arabia, Alberto TI - Classes d'Euler équivariantes et points rationnellement lisses JO - Annales de l'Institut Fourier PY - 1998 SP - 861 EP - 912 VL - 48 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1642/ DO - 10.5802/aif.1642 LA - fr ID - AIF_1998__48_3_861_0 ER -
%0 Journal Article %A Arabia, Alberto %T Classes d'Euler équivariantes et points rationnellement lisses %J Annales de l'Institut Fourier %D 1998 %P 861-912 %V 48 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1642/ %R 10.5802/aif.1642 %G fr %F AIF_1998__48_3_861_0
Arabia, Alberto. Classes d'Euler équivariantes et points rationnellement lisses. Annales de l'Institut Fourier, Tome 48 (1998) no. 3, pp. 861-912. doi : 10.5802/aif.1642. https://www.numdam.org/articles/10.5802/aif.1642/
[A1] Cycles de Schubert et cohomologie équivariante de K/T, Inventiones Mathematicae, 85 (1986), 39-52. | MR | Zbl
,[A2] Cohomologie T-équivariante de la variété de drapeaux d'un groupe de Kač-Moody, Bull. Soc. Math. France, 117 (1989), 129-165. | Numdam | MR | Zbl
,[AB] The moment map and equivariant cohomology, Topology, 23, n° 1 (1984), 1-28. | MR | Zbl
, ,[AP] Cohomological Methods in Transformation Groups, Cambridge studies in advanced mathematics 32, Cambridge University Press (1993). | MR | Zbl
, ,[Bo] Intersection Cohomology, Progress in Mathematics 50, Birkhäuser (1984). | MR | Zbl
et al,[Bri] Equivariant Chow groups for torus actions, Birkhäuser, Transformation groups, Vol 2, n° 3 (1997), 1-43. | Zbl
,[Bry] Equivariant intersection cohomology, Collection : Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), 5-32. Series : Contemp. Math., 139, American Mathematical Society, (1992). | MR | Zbl
,[C] The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations : classical methods. University Park, PA, (1991), 53-61, Proc. Sympos. Pure Math., 56 (1994), Part 1. | MR | Zbl
,[Dem] Désingularisation des variétés de Schubert généralisées, Ann. Sci. Ecole Norm. Sup., (4) 7 (1974), 53-88. | Numdam | MR | Zbl
,[Deo] Local Poincaré duality and non-singularity of Schubert varieties, Communications in Algebra, 13 (1986), 1379-1388. | MR | Zbl
,[Dy] The nil-Hecke ring and Deodhar's conjecture on Bruhat intervals, Inventiones Mathematicae, 111 (1993), 571-574. | MR | Zbl
,[EGA] Eléments de géométrie algébrique III. Etude cohomologique des faisceaux cohérents (première partie), Publications Mathématiques de l'I.H.E.S., n° 11 (1961). | Numdam
,[GM] Intersection homology II, Inventiones Mathematicae, 71 (1983), 77-129. | MR | Zbl
, ,[Ha] On cycles in flag manifolds, Math. Scand., 33 (1970), 269-274. | MR | Zbl
,[Hs] Cohomology Theory of Topological Transformation Groups, Ergebnisse der Mathematik und ihrer Grenzgebeite. Band, 85, Springer-Verlag (1970). | MR | Zbl
,[KaL1] Representations of Coxeter Groups and Hecke Algebras, Inventiones Mathematicae, 53 (1979), 165-184. | MR | Zbl
, ,[KaL2] Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math., A.M.S., 36 (1980), 185-203. | MR | Zbl
, ,[KuKo] The nil-Hecke ring and cohomology of G/P for a Kač-Moody group G, Advances in Math., 62 (1986), 187-237. | MR | Zbl
, ,[Ku0] A connexion of equivariant K-theory with the singularity of Schubert varieties, prépublication (1986-1987).
,[Ku1] The nil-Hecke ring and singularity of Schubert varieties, in “Lie Theory and geometry (in honor of Bertram Kostant)”, Progress in Math., 123, Birkhäuser, 497-507 (1994). | MR | Zbl
,[Ku2] The nil-Hecke ring and singularity of Schubert varieties, Inventiones Mathematicae, 123, n° 3 (1996), 471-506. | MR | Zbl
,[M] User's guide to spectral sequences, Publish or Perish, Mathematical lecture series 12 (1985). | MR | Zbl
[L] Slices étales, Bulletin Soc. Math. France, Mémoire 33 (1973), 81-105. | Numdam | MR | Zbl
,[Ma] Commutative algebra, Benjamin, New York, 1970. | MR | Zbl
,[Mi] Construction of universal bundles. I, II, Ann. of Math., (2) 63 (1956), 272-284, 430-436. | MR | Zbl
,[P] On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar, Indagationes Mathematicae, New-Series 5, n° 4 (1994), 483-493. | MR | Zbl
,[Q] The spectrum of an equivariant cohomology ring I, II, Ann. of Math., (2) 94 (1971), 549-572, 573-602. | MR | Zbl
,[R] Equivariant multiplicities on complex varieties, in “Orbites unipotentes et representations, III”, Astérisque, n° 173-174 (1989), 313-330. | Numdam | MR | Zbl
,- GKM-theory for torus actions on cyclic quiver Grassmannians, Algebra Number Theory, Volume 17 (2023) no. 12, p. 2055 | DOI:10.2140/ant.2023.17.2055
- Desingularizations of quiver Grassmannians for the equioriented cycle quiver, Pacific Journal of Mathematics, Volume 326 (2023) no. 1, p. 109 | DOI:10.2140/pjm.2023.326.109
- BASES OF -EQUIVARIANT COHOMOLOGY OF BOTT–SAMELSON VARIETIES, Journal of the Australian Mathematical Society, Volume 104 (2018) no. 1, p. 80 | DOI:10.1017/s1446788717000064
- Kumar’s criterion modulo p, Duke Mathematical Journal, Volume 163 (2014) no. 14 | DOI:10.1215/00127094-2819627
- Rational smoothness, cellular decompositions and GKM theory, Geometry Topology, Volume 18 (2014) no. 1, p. 291 | DOI:10.2140/gt.2014.18.291
- Lissité rationnelle des variétés de représentations d'un carquois, Comptes Rendus. Mathématique, Volume 338 (2004) no. 4, p. 267 | DOI:10.1016/j.crma.2003.12.012
- Torus Actions and Cohomology, Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action, Volume 131 (2002), p. 83 | DOI:10.1007/978-3-662-05071-2_2
- Rational smoothness and fixed points of torus actions, Transformation Groups, Volume 4 (1999) no. 2-3, p. 127 | DOI:10.1007/bf01237356
Cité par 8 documents. Sources : Crossref