Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 425-440.

Pour une algèbre de Lie-Rinehart (A,L), les liens entre les structures d’algèbre de Batalin-Vilkovisky et de Gerstenhaber sur l’algèbre extérieure ΛAL et de (A,L)-module à droite sur A ou plus généralement de connexion à droite sur A sont établis ainsi que les liens correspondants en homologie. Sous l’hypothèse additionnelle que L est projective de rang constant fini en tant que A-module, on obtient une description de l’homologie de l’algèbre de Batalin-Vilkovisky correspondante en fonction de la cohomologie de L à valeurs dans un module adapté. Des applications aux structures de Poisson et en géométrie différentielle sont abordées.

For any Lie-Rinehart algebra (A,L), B(atalin)-V(ilkovisky) algebra structures on the exterior A-algebra ΛAL correspond bijectively to right (A,L)-module structures on A; likewise, generators for the Gerstenhaber algebra ΛAL correspond bijectively to right (A,L)-connections on A. When L is projective as an A-module, given a B-V algebra structure on ΛAL, the homology of the B-V algebra (ΛAL,) coincides with the homology of L with coefficients in A with reference to the right (A,L)-module structure determined by . When L is also of finite rank n, there are bijective correspondences between (A,L)-connections on ΛAnL and right (A,L)-connections on A and between left (A,L)-module structures on ΛAnL and right (A,L)-module structures on A. Hence there are bijective correspondences between (A,L)-connections on ΛAnL and generators for the Gerstenhaber bracket on ΛAL and between (A,L)-module structures on ΛAnL and B-V algebra structures on ΛAL. The homology of such a B-V algebra (ΛAL,) coincides with the cohomology of L with coefficients in ΛAnL, with reference to the left (A,L)-module structure determined by . Some applications to Poisson structures and to differential geometry are discussed.

@article{AIF_1998__48_2_425_0,
     author = {Huebschmann, Johannes},
     title = {Lie-Rinehart algebras, {Gerstenhaber} algebras and {Batalin-Vilkovisky} algebras},
     journal = {Annales de l'Institut Fourier},
     pages = {425--440},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {48},
     number = {2},
     year = {1998},
     doi = {10.5802/aif.1624},
     mrnumber = {99b:17021},
     zbl = {0973.17027},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1624/}
}
TY  - JOUR
AU  - Huebschmann, Johannes
TI  - Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 425
EP  - 440
VL  - 48
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1624/
DO  - 10.5802/aif.1624
LA  - en
ID  - AIF_1998__48_2_425_0
ER  - 
%0 Journal Article
%A Huebschmann, Johannes
%T Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
%J Annales de l'Institut Fourier
%D 1998
%P 425-440
%V 48
%N 2
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1624/
%R 10.5802/aif.1624
%G en
%F AIF_1998__48_2_425_0
Huebschmann, Johannes. Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras. Annales de l'Institut Fourier, Tome 48 (1998) no. 2, pp. 425-440. doi : 10.5802/aif.1624. https://www.numdam.org/articles/10.5802/aif.1624/

[1] I.A. Batalin and G.S. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev., D 28 (1983), 2567-2582.

[2] I.A. Batalin and G.S. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B, 234 (1984), 106-124.

[3] I.A. Batalin and G.S. Vilkovisky, Existence theorem for gauge algebra, Jour. Math. Phys., 26 (1985), 172-184.

[4] S. Evens, J.-H. Lu, and A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, preprint.

[5] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math., 78 (1963), 267-288. | MR | Zbl

[6] M. Gerstenhaber and Samuel D. Schack, Algebras, bialgebras, quantum groups and algebraic deformations, In: Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff, eds. Cont. Math., AMS, Providence, 134 (1992), 51-92. | MR | Zbl

[7] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. in Math. Phys., 195 (1994), 265-285. | MR | Zbl

[8] G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc., 82 (1956), 246-269. | MR | Zbl

[9] J. Huebschmann, Poisson cohomology and quantization, J. für die Reine und Angew. Math., 408 (1990), 57-113. | MR | Zbl

[10] J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, preprint dg-ga/9702008, 1997. | Zbl

[11] D. Husemoller, J.C. Moore and J.D. Stasheff, Differential homological algebra and homogeneous spaces J. of Pure and Applied Algebra, 5 (1974), 113-185. | MR | Zbl

[12] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae, 41 (1995), 153-165. | MR | Zbl

[13] J.-L. Koszul, Crochet de Schouten-Nijenhuiset cohomologie, in E. Cartan et les Mathématiciens d'aujourd'hui, Lyon, 25-29 Juin, 1984, Astérisque, hors-série, (1985) 251-271. | Numdam | Zbl

[14] B.H. Lian and G.J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Comm. in Math. Phys., 154 (1993), 613-646. | MR | Zbl

[15] G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc., 108 (1963), 195-222. | MR | Zbl

[16] J.D. Stasheff, Deformation theory and the Batalin-Vilkovisky master equation, in: Deformation Theory and Symplectic Geometry, Proceedings of the Ascona meeting, June 1996, D. Sternheimer, J. Rawnsley, S. Gutt, eds., Mathematical Physics Studies, Vol. 20 Kluwer Academic Publishers, Dordrecht-Boston-London, 1997, 271-284.

[17] A. Weinstein, The modular automorphism group of a Poisson manifold, to appear in: special volume in honor of A. Lichnerowicz, J. of Geometry and Physics. | Zbl

[18] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, preprint, 1997. | Zbl

  • Dippell, Marvin; Kern, David Constraint vector bundles and reduction of Lie (bi-)algebroids, Differential Geometry and its Applications, Volume 99 (2025), p. 102242 | DOI:10.1016/j.difgeo.2025.102242
  • Cattaneo, Alberto S.; Fiorenza, Domenico; Longoni, Riccardo Graded Poisson Algebras, Encyclopedia of Mathematical Physics (2025), p. 520 | DOI:10.1016/b978-0-323-95703-8.00003-3
  • Banerjee, Abhishek; Kour, Surjeet Measurings of Hopf algebroids and morphisms in cyclic (co)homology theories, Advances in Mathematics, Volume 442 (2024), p. 109581 | DOI:10.1016/j.aim.2024.109581
  • Khalili, Valiollah On the structure of graded 3-Lie-Rinehart algebras, Filomat, Volume 38 (2024) no. 2, p. 369 | DOI:10.2298/fil2402369k
  • Han, Yang; Liu, Xin; Wang, Kai Hochschild (Co)homologies of DG K-algebras and Their Koszul Duals, Frontiers of Mathematics, Volume 18 (2023) no. 5, p. 1113 | DOI:10.1007/s11464-020-0213-x
  • Barreiro, Elisabete; Calderón, A.J.; Navarro, Rosa M.; Sánchez, José M. Graded Lie-Rinehart algebras, Journal of Geometry and Physics, Volume 191 (2023), p. 104914 | DOI:10.1016/j.geomphys.2023.104914
  • Pei, Yufeng; Sheng, Yunhe; Tang, Rong; Zhao, Kaiming ACTIONS OF MONOIDAL CATEGORIES AND REPRESENTATIONS OF CARTAN TYPE LIE ALGEBRAS, Journal of the Institute of Mathematics of Jussieu, Volume 22 (2023) no. 5, p. 2367 | DOI:10.1017/s147474802200007x
  • Hou, Bo; Wu, Jinzhong Batalin–Vilkovisky Structure on Hochschild Cohomology of Tame Hecke Algebras of Type A, Bulletin of the Iranian Mathematical Society, Volume 48 (2022) no. 5, p. 2159 | DOI:10.1007/s41980-021-00638-z
  • Guo, Shuangjian; Zhang, Xiaohui; Wang, Shengxiang On 3-Hom-Lie-Rinehart algebras, Communications in Algebra, Volume 50 (2022) no. 4, p. 1407 | DOI:10.1080/00927872.2021.1982954
  • Liu, Liyu; Ma, Wen Batalin-Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras, Frontiers of Mathematics, Volume 17 (2022) no. 5, p. 915 | DOI:10.1007/s11464-021-0978-6
  • Popescu, Marcela; Popescu, Paul; Boureanu, M.-M.; Constantinescu, D.; Munteanu, F.; Popescu, M.; Popescu, P.; Vladimirescu, C. Extended curvatures and Lie pseudoalgebras, ITM Web of Conferences, Volume 49 (2022), p. 02007 | DOI:10.1051/itmconf/20224902007
  • Laurent-Gengoux, Camille; Louis, Ruben Lie-Rinehart algebras ≃ acyclic Lie ∞-algebroids, Journal of Algebra, Volume 594 (2022), p. 1 | DOI:10.1016/j.jalgebra.2021.11.023
  • Chen, Liangyun; Liu, Meijun; Liu, Jiefeng Cohomologies and crossed modules for pre-Lie Rinehart algebras, Journal of Geometry and Physics, Volume 176 (2022), p. 104501 | DOI:10.1016/j.geomphys.2022.104501
  • Saracco, Paolo Universal Enveloping Algebras of Lie–Rinehart Algebras as a Left Adjoint Functor, Mediterranean Journal of Mathematics, Volume 19 (2022) no. 2 | DOI:10.1007/s00009-022-01985-9
  • Ben Hassine, Abdelkader; Chtioui, Taoufik; Mabrouk, Sami; Silvestrov, Sergei Structure and cohomology of 3-Lie-Rinehart superalgebras, Communications in Algebra, Volume 49 (2021) no. 11, p. 4883 | DOI:10.1080/00927872.2021.1931266
  • Fløystad, Gunnar; Manchon, Dominique; Munthe-Kaas, Hans Z. The Universal Pre-Lie–Rinehart Algebras of Aromatic Trees, Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, Volume 366 (2021), p. 137 | DOI:10.1007/978-3-030-78346-4_9
  • Albuquerque, Helena; Barreiro, Elisabete; Calderón, A. J.; Sánchez, José M. Split Lie–Rinehart algebras, Journal of Algebra and Its Applications, Volume 20 (2021) no. 09, p. 2150164 | DOI:10.1142/s0219498821501644
  • Huebschmann, Johannes On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras, Journal of Geometric Mechanics, Volume 13 (2021) no. 3, p. 385 | DOI:10.3934/jgm.2021009
  • Mishra, Satyendra Kumar; Silvestrov, Sergei A Review on Hom-Gerstenhaber Algebras and Hom-Lie Algebroids, Algebraic Structures and Applications, Volume 317 (2020), p. 285 | DOI:10.1007/978-3-030-41850-2_11
  • Mandal, Ashis; Mishra, Satyendra Kumar Deformation of hom-Lie-Rinehart algebras, Communications in Algebra, Volume 48 (2020) no. 4, p. 1653 | DOI:10.1080/00927872.2019.1698588
  • Mandal, Ashis; Mishra, Satyendra Kumar On Hom-Lie–Rinehart Algebras, Geometric Methods in Physics XXXVIII (2020), p. 155 | DOI:10.1007/978-3-030-53305-2_11
  • BAGHERZADEH, FATEMEH; BREMNER, MURRAY OPERADIC APPROACH TO COHOMOLOGY OF ASSOCIATIVE TRIPLE AND N-TUPLE SYSTEMS, Glasgow Mathematical Journal, Volume 62 (2020) no. S1, p. S128 | DOI:10.1017/s0017089519000454
  • Weber, Thomas Braided Cartan calculi and submanifold algebras, Journal of Geometry and Physics, Volume 150 (2020), p. 103612 | DOI:10.1016/j.geomphys.2020.103612
  • Qi, Zihao; Zhou, Guodong Poisson cohomology of plane Poisson structures with isolated singularities revisited, Journal of Mathematical Physics, Volume 61 (2020) no. 11 | DOI:10.1063/5.0014574
  • Carotenuto, Alessandro; Dąbrowski, Ludwik; Dubois-Violette, Michel Differential calculus on Jordan algebras and Jordan modules, Letters in Mathematical Physics, Volume 109 (2019) no. 1, p. 113 | DOI:10.1007/s11005-018-1102-z
  • Mandal, Ashis; Mishra, Satyendra Kumar Hom-Lie-Rinehart algebras, Communications in Algebra, Volume 46 (2018) no. 9, p. 3722 | DOI:10.1080/00927872.2018.1424865
  • Huebschmann, Johannes The formal Kuranishi parameterization via the universal homological perturbation theory solution of the deformation equation, Georgian Mathematical Journal, Volume 25 (2018) no. 4, p. 529 | DOI:10.1515/gmj-2018-0054
  • Castiglioni, J. L.; García-Martínez, X.; Ladra, M. Universal central extensions of Lie–Rinehart algebras, Journal of Algebra and Its Applications, Volume 17 (2018) no. 07, p. 1850134 | DOI:10.1142/s0219498818501347
  • Mandal, Ashis; Mishra, Satyendra Kumar On Hom-Gerstenhaber algebras, and Hom-Lie algebroids, Journal of Geometry and Physics, Volume 133 (2018), p. 287 | DOI:10.1016/j.geomphys.2018.07.018
  • Bashkirov, Denis; Voronov, Alexander A. The BV formalism for L-algebras, Journal of Homotopy and Related Structures, Volume 12 (2017) no. 2, p. 305 | DOI:10.1007/s40062-016-0129-z
  • Bangoura, Momo Relation d’équivalence sur les algèbres quasi-Batalin–Vilkovisky différentielles, Afrika Matematika, Volume 27 (2016) no. 5-6, p. 1079 | DOI:10.1007/s13370-016-0392-5
  • Bruce, Andrew James; Tortorella, Alfonso Giuseppe Kirillov structures up to homotopy, Differential Geometry and its Applications, Volume 48 (2016), p. 72 | DOI:10.1016/j.difgeo.2016.06.005
  • Krähmer, Ulrich; Rovi, Ana A Lie–Rinehart Algebra with No Antipode, Communications in Algebra, Volume 43 (2015) no. 10, p. 4049 | DOI:10.1080/00927872.2014.896375
  • Keller, Frank; Waldmann, Stefan Deformation theory of Courant algebroids via the Rothstein algebra, Journal of Pure and Applied Algebra, Volume 219 (2015) no. 8, p. 3391 | DOI:10.1016/j.jpaa.2014.12.002
  • Kowalzig, Niels Batalin–Vilkovisky algebra structures on(Co)Torand Poisson bialgebroids, Journal of Pure and Applied Algebra, Volume 219 (2015) no. 9, p. 3781 | DOI:10.1016/j.jpaa.2014.12.022
  • VITAGLIANO, LUCA Representations of Homotopy Lie–Rinehart Algebras, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 158 (2015) no. 1, p. 155 | DOI:10.1017/s0305004114000541
  • Rovi, Ana Hopf algebroids associated to Jacobi algebras, International Journal of Geometric Methods in Modern Physics, Volume 11 (2014) no. 10, p. 1450092 | DOI:10.1142/s0219887814500923
  • Chen, Zhuo; Liu, Zhangju; Zhong, Deshou Lie-Rinehart bialgebras for crossed products, Journal of Pure and Applied Algebra, Volume 215 (2011) no. 6, p. 1270 | DOI:10.1016/j.jpaa.2010.08.011
  • Huebschmann, Johannes Equivariant Cohomology over Lie Groupoids and Lie–Rinehart Algebras, Letters in Mathematical Physics, Volume 90 (2009) no. 1-3 | DOI:10.1007/s11005-009-0356-x
  • Eriksen, Eivind; Gustavsen, Trond Stølen Connections on modules over singularities of finite CM representation type, Journal of Pure and Applied Algebra, Volume 212 (2008) no. 7, p. 1561 | DOI:10.1016/j.jpaa.2007.10.008
  • Chen, Z.; Liu, Z.-J. On (co-)morphisms of Lie pseudoalgebras and groupoids, Journal of Algebra, Volume 316 (2007) no. 1, p. 1 | DOI:10.1016/j.jalgebra.2007.07.001
  • Mrčun, Janez On duality between étale groupoids and Hopf algebroids, Journal of Pure and Applied Algebra, Volume 210 (2007) no. 1, p. 267 | DOI:10.1016/j.jpaa.2006.09.006
  • Huebschmann, Johannes Higher homotopies and Maurer-Cartan algebras: Quasi-Lie-Rinehart, Gerstenhaber, and Batalin-Vilkovisky algebras, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 237 | DOI:10.1007/0-8176-4419-9_9
  • Vaisman, Izu Dirac submanifolds of Jacobi manifolds, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 603 | DOI:10.1007/0-8176-4419-9_21
  • Cattaneo, A.S.; Fiorenza, D.; Longoni, R. Graded Poisson Algebras, Encyclopedia of Mathematical Physics (2006), p. 560 | DOI:10.1016/b0-12-512666-2/00434-x
  • Landsman, N.P. Lie groupoids and Lie algebroids in physics and noncommutative geometry, Journal of Geometry and Physics, Volume 56 (2006) no. 1, p. 24 | DOI:10.1016/j.geomphys.2005.04.005
  • MICHÉA, SÉBASTIEN; NOVITCHKOV, GLEB BV-GENERATORS AND LIE ALGEBROIDS, International Journal of Mathematics, Volume 16 (2005) no. 10, p. 1175 | DOI:10.1142/s0129167x05003247
  • Bangoura, Momo Quasi-Bigèbres de Lie et Algèbres Quasi-Batalin-Vilkovisky Différentielles, Communications in Algebra, Volume 31 (2003) no. 1, p. 29 | DOI:10.1081/agb-120016748
  • Fernandes, Rui Loja Invariants of Lie algebroids, Differential Geometry and its Applications, Volume 19 (2003) no. 2, p. 223 | DOI:10.1016/s0926-2245(03)00032-9
  • Loja Fernandes, Rui Lie Algebroids, Holonomy and Characteristic Classes, Advances in Mathematics, Volume 170 (2002) no. 1, p. 119 | DOI:10.1006/aima.2001.2070
  • Beltran, J.V. Star calculus on Jacobi manifolds, Differential Geometry and its Applications, Volume 16 (2002) no. 2, p. 181 | DOI:10.1016/s0926-2245(02)00059-1
  • Huebschmann, Johannes; Stasheff, Jim Formal solution of the master equation via HPT and deformation theory, Forum Mathematicum, Volume 14 (2002) no. 6 | DOI:10.1515/form.2002.037

Cité par 52 documents. Sources : Crossref