Nous montrons que les seuls compacts convexes totalement réels de
We show that a convex totally real compact set in
@article{AIF_1998__48_1_205_0, author = {Bloom, Thomas and Calvi, Jean-Paul}, title = {The distribution of extremal points for {Kergin} interpolations: real case}, journal = {Annales de l'Institut Fourier}, pages = {205--222}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {1}, year = {1998}, doi = {10.5802/aif.1615}, mrnumber = {99c:32015}, zbl = {0915.41001}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1615/} }
TY - JOUR AU - Bloom, Thomas AU - Calvi, Jean-Paul TI - The distribution of extremal points for Kergin interpolations: real case JO - Annales de l'Institut Fourier PY - 1998 SP - 205 EP - 222 VL - 48 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1615/ DO - 10.5802/aif.1615 LA - en ID - AIF_1998__48_1_205_0 ER -
%0 Journal Article %A Bloom, Thomas %A Calvi, Jean-Paul %T The distribution of extremal points for Kergin interpolations: real case %J Annales de l'Institut Fourier %D 1998 %P 205-222 %V 48 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1615/ %R 10.5802/aif.1615 %G en %F AIF_1998__48_1_205_0
Bloom, Thomas; Calvi, Jean-Paul. The distribution of extremal points for Kergin interpolations: real case. Annales de l'Institut Fourier, Tome 48 (1998) no. 1, pp. 205-222. doi : 10.5802/aif.1615. https://www.numdam.org/articles/10.5802/aif.1615/
[1] Complex Kergin interpolation, J. Approx. Theory, 64 (1991), 214-225. | MR | Zbl
and ,[2] Complex Kergin interpolation and the Fantappiè transform, Math. Z., 208 (1991), 257-271. | MR | Zbl
and ,[3] Complex convexity and analytic functionals I, preprint, University of Iceland, 1995.
, and ,[4] Kergin interpolants of Holomorphic Functions, Constr. Approx., 13 (1997), 569-583. | MR | Zbl
and ,[5] Theorie der Konvexen Körper, Chelsea, New York, 1971. | Zbl
and ,[6] Kergin interpolants at the roots of unity approximate C2 functions, J. Analyse Math., (to appear). | Zbl
and ,[7] Lectures on complex approximation, Birkhauser, Boston, 1987. | MR | Zbl
,[8] Pluripotential Theory, Oxford University Press, Oxford, 1991. | MR | Zbl
,[9] Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972. | MR | Zbl
,[10] An extremal plurisubharmonic function associated to a convex pluricomplex Green function with pole at infinity, J. reine angew. Math., 471 (1996), 139-163. | MR | Zbl
,[11] Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995. | MR | Zbl
,[12] Extremal plurisubharmonic functions on ℂN, Ann. Pol. Math., XXXIX (1981), 175-211. | MR | Zbl
,[13] General orthogonal polynomials, Cambridge University Press, Cambridge, 1992. | MR | Zbl
and ,[14] Representations of functionals via summability methods. I, Acta. Sci. Math., 48 (1985), 483-498. | MR | Zbl
,[15] Interpolation and Approximation by Rational Functions in the Complex Domain (5th edition), A.M.S., Providence, 1969.
,Cité par Sources :