Nous présentons les O-systèmes (Définition 3.1) des transformations orthogonales de
We introduce O-systems (Definition 3.1) of orthogonal transformations of
@article{AIF_1997__47_2_687_0, author = {Ou, Ye-Lin}, title = {Quadratic harmonic morphisms and {O-systems}}, journal = {Annales de l'Institut Fourier}, pages = {687--713}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {2}, year = {1997}, doi = {10.5802/aif.1578}, mrnumber = {98j:58038}, zbl = {0918.58020}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1578/} }
TY - JOUR AU - Ou, Ye-Lin TI - Quadratic harmonic morphisms and O-systems JO - Annales de l'Institut Fourier PY - 1997 SP - 687 EP - 713 VL - 47 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1578/ DO - 10.5802/aif.1578 LA - en ID - AIF_1997__47_2_687_0 ER -
Ou, Ye-Lin. Quadratic harmonic morphisms and O-systems. Annales de l'Institut Fourier, Tome 47 (1997) no. 2, pp. 687-713. doi : 10.5802/aif.1578. https://www.numdam.org/articles/10.5802/aif.1578/
[1] Harmonic maps with symmetry, harmonic morphisms, and deformation of metrics, Pitman Res. Notes Math. Ser., vol. 87, Pitman, Boston, London, Melbourne, 1983. | MR | Zbl
,[2] Bernstein theorems for harmonic morphisms from ℝ3 and S3, Math. Ann., 280 (1988), 579-603. | EuDML | MR | Zbl
and ,[3] Harmonic morphisms and conformal foliations by geodesics of three-dimensional space forms, J. Austral. Math. Soc., Ser. A, 51 (1991), 118-153. | MR | Zbl
and ,[4] Harmonic morphisms, Seifert fibre spaces and conformal foliations, Proc. London Math. Soc., 64 (1992), 170-196. | Zbl
and ,[5] Hermitian structures and harmonic morphisms on higher dimensional Euclidean spaces, Internat. J. Math., 6 (1995), 161-192. | MR | Zbl
and ,[6] Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier (Grenoble), 29-1 (1979), 207-228. | EuDML | Numdam | MR | Zbl
, , and ,[7] Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., 17 (1938), 177-191. | JFM | Zbl
,[8] Differentiable Manifolds, A first course, Basler Lehrbücher, Berlin, 1993. | MR | Zbl
,[9] Beweis des Satzes von Hurwitz-Radon, Comment. Math. Helvet., 15 (1952), 358-366. | EuDML | Zbl
,[10] A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68. | MR | Zbl
and ,[11] Selected topics in harmonic maps, CBMS Regional Conf. Ser. in Math., vol. 50, Amer. Math. Soc., Providence, R.I., 1983. | MR | Zbl
and ,[12] Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524. | MR | Zbl
and ,[13] Harmonic maps and minimal immersions with symmetries, Ann. of Math. Stud., vol. 130, Princeton University Press, 1993. | Zbl
and ,[14] Polynomial harmonic morphisms between Euclidean spheres, Proc. Amer. Math. Soc., vol. 123, 9 (1995), 2921-2925. | MR | Zbl
and ,[15] Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z., 177 (1981), 479-502. | Zbl
, , and ,[16] Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28-2 (1978), 107-144. | Numdam | MR | Zbl
,[17] Harmonic morphisms from quaternionic projective spaces, Geom. Dedicata, 56 (1995), 327-332. | MR | Zbl
,[18] Harmonic morphisms between spaces of constant curvature, Proc. Edinburgh Math. Soc., 36 (1992), 133-143. | MR | Zbl
,[19] Harmonic morphisms from complex projective spaces, Geom. Dedicata, 53 (1994), 155-161. | MR | Zbl
,[20] A note on the classification of holomorphic harmonic morphisms, Potential Analysis, 2 (1993), 295-298. | MR | Zbl
and ,[21] Über die Komposition der quadratischen Formen, Math. Ann., 88 (1923), 1-25. | JFM
,[22] Fibre Bundles, McGraw Hill, New York, 1966. | MR | Zbl
,[23] A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229. | MR | Zbl
,[24] Processus Stochastiques et Mouvement Brownien, Gauthier-Villard, Paris, 1948. | Zbl
,[25] Isoparametrische Hyperflächen in Sphären, I, Math. Ann., 251 (1980), 57-71. | Zbl
,[26] Elie Cartan's work on isoparametric families of hypersurfaces, in Differential Geometry, S.S. Chern and R. Osserman ed., Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975, 191-200. | MR | Zbl
,[27] Complete lifts of harmonic maps and morphisms between Euclidean spaces, Contributions to Algebra and Geometry, vol. 37 (1996), 31-40. | MR | Zbl
,[28] O-systems, orthogonal multiplications and isoparametric functions, Guangxi University for Nationalities, preprint, 1996.
,[29] On constructions of harmonic morphisms into Euclidean spaces, J. Guangxi University for Nationalities, vol. 2 (1996), 1-6.
,[30] On the classification of quadratic harmonic morphisms between Euclidean spaces, Algebras, Groups and Geometries, vol. 13 (1996), 41-53. | MR | Zbl
and ,[31] On some types of isoparametric hypersurfaces in spheres, I, Tôhoku Math. J., 27 (1975), 515-559. | Zbl
and ,[32] On some types of isoparametric hypersurfaces in spheres, II, Tôhoku Math. J., 28 (1976), 7-55. | Zbl
and ,[33] Lineare Scharen orthogonalar Matrizen, Abh. Math. Semin. Univ. Hamburg, I (1922), 1-14. | JFM
,[34] Harmonic mappings of spheres, Thesis, Warwick University, 1972. | Zbl
,[35] A class of hypersurfaces with constant principal curvatures in a sphere, J. Diff. Geom., 11 (1976), 225-233. | MR | Zbl
,[36] On the principal curvatures of homogeneous hypersurfaces in a sphere, in Differential Geometry in honour of K. Yano, Tokyo, 1972, 469-481. | MR | Zbl
and ,[37] Harmonic morphisms, foliations and Gauss maps, in Complex differential geometry and nonlinear partial differential equations, Y.T. Siu ed., Contemp. Math., vol. 49, Amer. Math. Soc., Providence, R.I., 1986, 145-184. | MR | Zbl
,[38] Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Internat. J. Math., 3 (1992), 415-439. | MR | Zbl
,Cité par Sources :