Solutions classiques globales des équations d'Euler pour un fluide parfait compressible
Annales de l'Institut Fourier, Tome 47 (1997) no. 1, pp. 139-153.

Soit ρ, u, e, S et p les variables usuelles qui décrivent l’état d’un fluide en coordonnées eulériennes. Le domaine physique occupé par le fluide est a priori d tout entier, mais ρ peut être nul en dehors d’un compact K(t). On choisit l’équation d’état d’un gaz parfait, p=(γ-1)ρe, où γ[1,1+2/d] est une constante. Le cas γ=1+2/d est celui du gaz mono-atomique.

Dans la limite ρ0, les collisions sont rares et on est tenté d’approcher le mouvement des particules par un mouvement rectiligne uniforme : le champ de vitesse obéit alors à vt+(v·)v=0. Si de plus v(0,x)=A0x, où A0Md() n’a pas de valeur propre réelle négative, v est défini pour tout t0:v(t,x)=A(t)x, ce qu’on note uA(t).

On montre ici que, pour une condition initiale ρ0, u0, S0 telle que ρ0(γ-1)/2, u0-uA0, S0-S¯ (S¯ étant une constante) soient petits dans Hm(d) (m>1+d/2), le problème de Cauchy admet une solution classique pour tout t0. Si de plus A0 n’a aucune valeur propre réelle (dans ce cas, d est pair), l’existence a lieu pour tout t. Enfin, pour un gaz mono-atomique, on donne une description précise du comportement asymptotique en temps.

Let ρ, u, e, S, p the usual variables describing the state of a fluid in an eulerian frame. The underlying physical space is d, d1. We restrict to the perfect gas law: p=(γ-1)ρe, where γ[1,1+2/d] is a constant. In the formal limit ρ0 (rarefied gases), the particles evolve freely with a uniform motion; if the initial velocity field is linear (say u0(x)=A0x), then it remains so, with A(t)=-A(t)2, and it is defined for every positive time, provided A0 does not have a non-positive real eigenvalue. Let uA be this field. The purpose of this paper is to prove that, if the initial data (ρ0,u0,S0) is close to (0,uA,S¯), with S¯ a constant, then the Cauchy problem admits a (unique) smooth solution defined for all t0. In the mono-atomic case (γ=1+2/d), we give an accurate description of the asymptotic behaviour. All these results are especially designed for finite mass flows. The above-mentioned closeness relies as usual to the space Hm(d) with m>1+d/2.

In even space dimension (say d=2), our result shows the existence of non-trivial smooth flows defined for all times t.

@article{AIF_1997__47_1_139_0,
     author = {Serre, Denis},
     title = {Solutions classiques globales des \'equations {d'Euler} pour un fluide parfait compressible},
     journal = {Annales de l'Institut Fourier},
     pages = {139--153},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {1},
     year = {1997},
     doi = {10.5802/aif.1563},
     mrnumber = {98a:35108},
     zbl = {0864.35069},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.1563/}
}
TY  - JOUR
AU  - Serre, Denis
TI  - Solutions classiques globales des équations d'Euler pour un fluide parfait compressible
JO  - Annales de l'Institut Fourier
PY  - 1997
SP  - 139
EP  - 153
VL  - 47
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1563/
DO  - 10.5802/aif.1563
LA  - fr
ID  - AIF_1997__47_1_139_0
ER  - 
%0 Journal Article
%A Serre, Denis
%T Solutions classiques globales des équations d'Euler pour un fluide parfait compressible
%J Annales de l'Institut Fourier
%D 1997
%P 139-153
%V 47
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1563/
%R 10.5802/aif.1563
%G fr
%F AIF_1997__47_1_139_0
Serre, Denis. Solutions classiques globales des équations d'Euler pour un fluide parfait compressible. Annales de l'Institut Fourier, Tome 47 (1997) no. 1, pp. 139-153. doi : 10.5802/aif.1563. https://www.numdam.org/articles/10.5802/aif.1563/

[1] S. Alinhac, Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux, Inventiones Mathematicae, vol 111 (1993), 627-678. | EuDML | MR | Zbl

[2] J.-Y. Chemin, Dynamique des gaz à masse totale finie, Asymptotic Analysis, vol 3 (1990), 215-220. | MR | Zbl

[3] L. Garding, Problèmes de Cauchy pour les systèmes quasi-linéaires d'ordre un strictement hyperboliques, in Les équations aux dérivées partielles, Colloques internationaux du CNRS, vol 117, 33-40, Paris 1963. | MR | Zbl

[4] P.D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., vol 5 (1964), 611-613. | MR | Zbl

[5] P.-L. Lions, Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques, Comptes Rendus Acad. Sci. Paris, vol 316 (1993), 1335-1340 et : Compacité des solutions des équations de Navier-Stokes compressibles isentropiques, Comptes Rendus Acad. Sci. Paris, vol 317 (1993), 115-120. | MR | Zbl

[6] T. Makino, S. Ukai et S. Kawashima, Sur la solution à support compact de l'équation d'Euler compressible, Japan J. Appl. Math., vol 3 (1986), 249-257. | MR | Zbl

[7] A. Majda, Compressible fluid flows and systems of conservation laws in several space variables, Appl. Math. Sci. Ser., vol 53. Springer-Verlag, Berlin, 1983. | MR | Zbl

[8] D. Serre, Systèmes de lois de conservation, Diderot, Paris, 1996. | MR | Zbl

[9] T. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., vol 101 (1985), 475-485. | MR | Zbl

  • Lai, Geng; Yuan, Zijun Global expanding smooth solutions to spherically symmetric gravitational Euler-Poisson system, Journal of Differential Equations, Volume 422 (2025), p. 152 | DOI:10.1016/j.jde.2024.12.014
  • Lai, Geng; Yuan, Zijun; Shi, Yingchun On the expansion of a flow into vacuum for spherically symmetric relativistic hydrodynamic equations, Journal of Mathematical Analysis and Applications, Volume 543 (2025) no. 2, p. 128922 | DOI:10.1016/j.jmaa.2024.128922
  • Jang, Juhi; Liu, Jiaqi; Schrecker, Matthew Converging/Diverging Self-Similar Shock Waves: From Collapse to Reflection, SIAM Journal on Mathematical Analysis, Volume 57 (2025) no. 1, p. 190 | DOI:10.1137/24m1653240
  • Ducomet, Bernard; Nečasová, Šárka; Simon, John Sebastian H. Global solutions of Euler–Maxwell equations with dissipation, Annali di Matematica Pura ed Applicata (1923 -) (2024) | DOI:10.1007/s10231-024-01538-9
  • Fajman, David; Ofner, Maximilian; Wyatt, Zoe Relativistic fluids in cosmological spacetimes, Classical and Quantum Gravity, Volume 41 (2024) no. 23, p. 233001 | DOI:10.1088/1361-6382/ad84ad
  • Tataru, Daniel Free Boundary Problems for Compressible Flows, Free Boundary Problems in Fluid Dynamics, Volume 54 (2024), p. 267 | DOI:10.1007/978-3-031-60452-2_4
  • Song, Haoxiang; Sheng, Wancheng; Lai, Geng Global existence of bounded smooth solutions for the compressible ideal MHD system with planar symmetry, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 6 | DOI:10.1007/s00033-024-02367-9
  • Tang, Tong; Nečasová, Šárka Derivation of the inviscid compressible Primitive Equations, Applied Mathematics Letters, Volume 139 (2023), p. 108534 | DOI:10.1016/j.aml.2022.108534
  • Antonelli, Paolo; Marcati, Pierangelo; Zheng, Hao An Intrinsically Hydrodynamic Approach to Multidimensional QHD Systems, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 2 | DOI:10.1007/s00205-023-01856-x
  • Lai, Geng; Shi, Yingchun Global Existence of Smooth Solutions for the One-Dimensional Full Euler System for a Dusty Gas, Communications on Applied Mathematics and Computation, Volume 5 (2023) no. 3, p. 1235 | DOI:10.1007/s42967-022-00197-y
  • Geng, Yongcai; Li, Yachun; Zhu, Shengguo On the global-in-time inviscid limit of the 3D degenerate compressible Navier-Stokes equations, Journal de Mathématiques Pures et Appliquées, Volume 179 (2023), p. 337 | DOI:10.1016/j.matpur.2023.09.010
  • Lai, Geng; Sheng, Wancheng Supersonic Reacting Jet Flows from a Three-Dimensional Divergent Conical Nozzle, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 5, p. 5260 | DOI:10.1137/22m1529099
  • Boureni, Dalila; Georgiev, Svetlin; Kheloufi, Arezki; Mebarki, Karima Classical solutions for the Euler equations of compressible fluid dynamics: A new topological approach, Applied General Topology, Volume 23 (2022) no. 2, p. 463 | DOI:10.4995/agt.2022.15963
  • Parmeshwar, Shrish Global Existence for the N Body Euler–Poisson System, Archive for Rational Mechanics and Analysis, Volume 244 (2022) no. 2, p. 157 | DOI:10.1007/s00205-022-01758-4
  • Danchin, R.; Ducomet, B. On the Global Existence for the Compressible Euler–Riesz System, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 2 | DOI:10.1007/s00021-022-00664-9
  • Hadžić, Mahir Star dynamics: Collapse vs. expansion, Quarterly of Applied Mathematics, Volume 81 (2022) no. 2, p. 329 | DOI:10.1090/qam/1638
  • Xin, Zhouping; Zhu, Shengguo Global well-posedness of regular solutions to the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and vacuum, Advances in Mathematics, Volume 393 (2021), p. 108072 | DOI:10.1016/j.aim.2021.108072
  • Rickard, Calum Global Solutions to the Compressible Euler Equations with Heat Transport by Convection Around Dyson’s Isothermal Affine Solutions, Archive for Rational Mechanics and Analysis, Volume 241 (2021) no. 2, p. 947 | DOI:10.1007/s00205-021-01669-w
  • Cao, Yue; Li, Yachun On Blow-up of Regular Solutions to the Isentropic Euler and Euler-Boltzmann Equations with Vacuum, Chinese Annals of Mathematics, Series B, Volume 42 (2021) no. 4, p. 495 | DOI:10.1007/s11401-021-0273-6
  • Antonelli, Paolo; Marcati, Pierangelo; Zheng, Hao Genuine Hydrodynamic Analysis to the 1-D QHD System: Existence, Dispersion and Stability, Communications in Mathematical Physics, Volume 383 (2021) no. 3, p. 2113 | DOI:10.1007/s00220-021-03998-z
  • Li, Jintao; Shen, Jindou; Xu, Gang The global supersonic flow with vacuum state in a 2D convex duct, Electronic Research Archive, Volume 29 (2021) no. 2, p. 2077 | DOI:10.3934/era.2020106
  • Danchin, R.; Ducomet, B. On the global existence for the compressible Euler–Poisson system, and the instability of static solutions, Journal of Evolution Equations, Volume 21 (2021) no. 3, p. 3035 | DOI:10.1007/s00028-020-00639-1
  • Blanc, Xavier; Danchin, Raphaël; Ducomet, Bernard; Nečasová, Šárka The global existence issue for the compressible Euler system with Poisson or Helmholtz couplings, Journal of Hyperbolic Differential Equations, Volume 18 (2021) no. 01, p. 169 | DOI:10.1142/s0219891621500041
  • Rickard, Calum The vacuum boundary problem for the spherically symmetric compressible Euler equations with positive density and unbounded entropy, Journal of Mathematical Physics, Volume 62 (2021) no. 2 | DOI:10.1063/5.0037656
  • Lai, Geng; Zhao, Qing Existence of global bounded smooth solutions for the one‐dimensional nonisentropic Euler system, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 2, p. 2226 | DOI:10.1002/mma.6933
  • Serre, Denis Projective Properties of Divergence-Free Symmetric Tensors, and New Dispersive Estimates in Gas Dynamics, Milan Journal of Mathematics, Volume 89 (2021) no. 2, p. 433 | DOI:10.1007/s00032-021-00342-x
  • Rickard, Calum; Hadžić, Mahir; Jang, Juhi Global existence of the nonisentropic compressible Euler equations with vacuum boundary surrounding a variable entropy state, Nonlinearity, Volume 34 (2021) no. 1, p. 33 | DOI:10.1088/1361-6544/abb03b
  • Xu, Gang; Yin, Huicheng Three-Dimensional Global Supersonic Euler Flows in the Infinitely Long Divergent Nozzles, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 1, p. 133 | DOI:10.1137/19m1307585
  • Serre, Denis A Priori Estimates from First Principles in Gas Dynamics, Waves in Flows (2021), p. 1 | DOI:10.1007/978-3-030-67845-6_1
  • Parmeshwar, Shrish; Hadžić, Mahir; Jang, Juhi Global expanding solutions of compressible Euler equations with small initial densities, Quarterly of Applied Mathematics, Volume 79 (2020) no. 2, p. 273 | DOI:10.1090/qam/1580
  • Cheung, Ka Luen; Wong, Sen Finite-time singularity formation for the original multidimensional compressible Euler equations for generalized Chaplygin gas, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 2 | DOI:10.1007/s00033-020-1287-8
  • Shkoller, Steve; Sideris, Thomas C. Global Existence of Near-Affine Solutions to the Compressible Euler Equations, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 1, p. 115 | DOI:10.1007/s00205-019-01387-4
  • Geng, Yongcai; Li, Yachun; Zhu, Shengguo Vanishing Viscosity Limit of the Navier–Stokes Equations to the Euler Equations for Compressible Fluid Flow with Vacuum, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 2, p. 727 | DOI:10.1007/s00205-019-01401-9
  • Li, Yachun; Pan, Ronghua; Zhu, Shengguo On Classical Solutions for Viscous Polytropic Fluids with Degenerate Viscosities and Vacuum, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 3, p. 1281 | DOI:10.1007/s00205-019-01412-6
  • Hadžić, Mahir; Jang, J. Juhi A Class of Global Solutions to the Euler–Poisson System, Communications in Mathematical Physics, Volume 370 (2019) no. 2, p. 475 | DOI:10.1007/s00220-019-03525-1
  • Serre, Denis Helicity and other conservation laws in perfect fluid motion, Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, p. 175 | DOI:10.1016/j.crme.2017.12.001
  • Hadžić, Mahir; Jang, Juhi Expanding large global solutions of the equations of compressible fluid mechanics, Inventiones mathematicae, Volume 214 (2018) no. 3, p. 1205 | DOI:10.1007/s00222-018-0821-1
  • Xu, Gang; Yin, Huicheng The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, I: 3D irrotational Euler equations, Physica Scripta, Volume 93 (2018) no. 10, p. 105001 | DOI:10.1088/1402-4896/aad681
  • Sideris, Thomas C. Global Existence and Asymptotic Behavior of Affine Motion of 3D Ideal Fluids Surrounded by Vacuum, Archive for Rational Mechanics and Analysis, Volume 225 (2017) no. 1, p. 141 | DOI:10.1007/s00205-017-1106-3
  • Serre, Denis Long-time Stability in Systems of Conservation Laws, Using Relative Entropy/Energy, Archive for Rational Mechanics and Analysis, Volume 219 (2016) no. 2, p. 679 | DOI:10.1007/s00205-015-0903-9
  • Li, Yachun; Pan, Ronghua; Zhu, Shengguo Recent progress on classical solutions for compressible isentropic Navier-Stokes equations with degenerate viscosities and vacuum, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 2, p. 507 | DOI:10.1007/s00574-016-0165-7
  • Pan, Ronghua; Zhu, Yi Singularity formation for one dimensional full Euler equations, Journal of Differential Equations, Volume 261 (2016) no. 12, p. 7132 | DOI:10.1016/j.jde.2016.09.015
  • Gang, Xu; Huicheng, Yin On Global Multidimensional Supersonic Flows with Vacuum States at Infinity, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 3, p. 1189 | DOI:10.1007/s00205-015-0878-6
  • Jang, Juhi; Masmoudi, Nader Well‐posedness of Compressible Euler Equations in a Physical Vacuum, Communications on Pure and Applied Mathematics, Volume 68 (2015) no. 1, p. 61 | DOI:10.1002/cpa.21517
  • Hassainia, Zineb On the 2D isentropic Euler system with unbounded initial vorticity, Journal of Differential Equations, Volume 259 (2015) no. 1, p. 264 | DOI:10.1016/j.jde.2015.02.008
  • Lécureux-Mercier, Magali A Priori Estimates and Analytical Construction of Radially Symmetric Solutions in the Gas Dynamics, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 4, p. 2853 | DOI:10.1137/130933320
  • Jang, Juhi; Masmoudi, Nader Well and ill-posedness for compressible Euler equations with vacuum, Journal of Mathematical Physics, Volume 53 (2012) no. 11 | DOI:10.1063/1.4767369
  • Carles, Rémi; Danchin, Raphaël; Saut, Jean-Claude Madelung, Gross–Pitaevskii and Korteweg, Nonlinearity, Volume 25 (2012) no. 10, p. 2843 | DOI:10.1088/0951-7715/25/10/2843
  • Jang, Juhi; Masmoudi, Nader Vacuum in Gas and Fluid Dynamics, Nonlinear Conservation Laws and Applications, Volume 153 (2011), p. 315 | DOI:10.1007/978-1-4419-9554-4_17
  • Lécureux-Mercier, Magali Global Smooth Solutions of Euler Equations for Van der Waals Gases, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 2, p. 877 | DOI:10.1137/100787982
  • Alazard, Thomas; Carles, Rémi Supercritical Geometric Optics for Nonlinear Schrödinger Equations, Archive for Rational Mechanics and Analysis, Volume 194 (2009) no. 1, p. 315 | DOI:10.1007/s00205-008-0176-7
  • Jang, Juhi; Masmoudi, Nader Well‐posedness for compressible Euler equations with physical vacuum singularity, Communications on Pure and Applied Mathematics, Volume 62 (2009) no. 10, p. 1327 | DOI:10.1002/cpa.20285
  • Secchi, Paolo On Compressible and Incompressible Vortex Sheets, Analysis and Simulation of Fluid Dynamics (2007), p. 201 | DOI:10.1007/978-3-7643-7742-7_12
  • Fellner, Klemens; Schmeiser, Christian Classification of Equilibrium Solutions of the Cometary Flow Equation and Explicit Solutions of the Euler Equations for Monatomic Ideal Gases, Journal of Statistical Physics, Volume 129 (2007) no. 3, p. 493 | DOI:10.1007/s10955-007-9396-8
  • GODIN, PAUL GLOBAL CENTERED WAVES AND CONTACT DISCONTINUITIES OF THE AXISYMMETRIC EULER EQUATIONS, Journal of Hyperbolic Differential Equations, Volume 03 (2006) no. 01, p. 143 | DOI:10.1142/s0219891606000744
  • Benzoni-Gavage, Sylvie; Serre, Denis Multi-dimensional hyperbolic partial differential equations, 2006 | DOI:10.1093/acprof:oso/9780199211234.001.0001
  • Jovanovic, Vladimir; Rohde, Christian Error Estimates for Finite Volume Approximations of Classical Solutions for Nonlinear Systems of Hyperbolic Balance Laws, SIAM Journal on Numerical Analysis, Volume 43 (2006) no. 6, p. 2423 | DOI:10.1137/s0036142903438136
  • Chen, Gui-Qiang Euler Equations and Related Hyperbolic Conservation Laws, Handbook of Differential Equations Evolutionary Equations, Volume 2 (2005), p. 1 | DOI:10.1016/s1874-5717(06)80004-6
  • Compensated Compactness, Hyberbolic Conservation Laws in Continuum Physics, Volume 325 (2005), p. 511 | DOI:10.1007/3-540-29089-3_16
  • Coulombel, Jean-François From gas dynamics to pressureless gas dynamics, Proceedings of the American Mathematical Society, Volume 134 (2005) no. 3, p. 683 | DOI:10.1090/s0002-9939-05-08087-1
  • Godin, Paul A Class of Global Non-smooth Axisymmetric Solutions to the Euler Equations of an Isentropic Perfect Gas in 2 Space Dimensions, Hyperbolic Problems: Theory, Numerics, Applications (2003), p. 549 | DOI:10.1007/978-3-642-55711-8_51
  • Rozanova, Olga S. Solutions with Linear Profile of Velocity to the Euler Equations in Several Dimensions, Hyperbolic Problems: Theory, Numerics, Applications (2003), p. 861 | DOI:10.1007/978-3-642-55711-8_81
  • Chen, Gui-Qiang; Wang, Dehua The Cauchy Problem for the Euler Equations for Compressible Fluids, Volume 1 (2002), p. 421 | DOI:10.1016/s1874-5792(02)80012-x
  • Rozanova, Olga S. On a Nonexistence of Global Smooth Solutions to Compressible Euler Equations, Hyperbolic Problems: Theory, Numerics, Applications (2001), p. 811 | DOI:10.1007/978-3-0348-8372-6_34
  • Temam, Roger Some Developments on Navier-Stokes Equations in the Second Half of the 20th Century, Development of Mathematics, 1950–2000 (2000), p. 1049 | DOI:10.1007/978-3-0348-8968-1_36
  • Dafermos, Constantine M. Admissible Shocks, Hyperbolic Conservation Laws in Continuum Physics, Volume 325 (2000), p. 147 | DOI:10.1007/978-3-662-22019-1_8
  • Dolbeault, J. Time-dependent rescalings and Lyapunov functionals for some kinetic and fluid models, Transport Theory and Statistical Physics, Volume 29 (2000) no. 3-5, p. 537 | DOI:10.1080/00411450008205890
  • Grassin, M. Existence of Global Smooth Solutions to Euler Equations for an Isentropic Perfect Gas, Hyperbolic Problems: Theory, Numerics, Applications (1999), p. 395 | DOI:10.1007/978-3-0348-8720-5_43
  • Grassin, Magali; Serre, Denis Existence de solutions globales et régulières aux équations d'Euler pour un gaz parfait isentropique, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 325 (1997) no. 7, p. 721 | DOI:10.1016/s0764-4442(97)80048-1

Cité par 69 documents. Sources : Crossref