Relative discrete series of line bundles over bounded symmetric domains
Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1011-1026.

Cet article est une étude de la série relative discrète de l’espace des sections L2 d’un fibré sur un domaine symétrique borné. On démontre que toute série discrète provient, en tant que sous-module irréductible, d’un produit tensoriel d’une série holomorphe discrète par une représentation de dimension finie.

We study the relative discrete series of the L2-space of the sections of a line bundle over a bounded symmetric domain. We prove that all the discrete series appear as irreducible submodules of the tensor product of a holomorphic discrete series with a finite dimensional representation.

@article{AIF_1996__46_4_1011_0,
     author = {Dooley, Anthony H. and {\O}rsted, Bent and Zhang, Genkai},
     title = {Relative discrete series of line bundles over bounded symmetric domains},
     journal = {Annales de l'Institut Fourier},
     pages = {1011--1026},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {46},
     number = {4},
     year = {1996},
     doi = {10.5802/aif.1538},
     mrnumber = {98b:22028},
     zbl = {0853.22011},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1538/}
}
TY  - JOUR
AU  - Dooley, Anthony H.
AU  - Ørsted, Bent
AU  - Zhang, Genkai
TI  - Relative discrete series of line bundles over bounded symmetric domains
JO  - Annales de l'Institut Fourier
PY  - 1996
SP  - 1011
EP  - 1026
VL  - 46
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1538/
DO  - 10.5802/aif.1538
LA  - en
ID  - AIF_1996__46_4_1011_0
ER  - 
%0 Journal Article
%A Dooley, Anthony H.
%A Ørsted, Bent
%A Zhang, Genkai
%T Relative discrete series of line bundles over bounded symmetric domains
%J Annales de l'Institut Fourier
%D 1996
%P 1011-1026
%V 46
%N 4
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1538/
%R 10.5802/aif.1538
%G en
%F AIF_1996__46_4_1011_0
Dooley, Anthony H.; Ørsted, Bent; Zhang, Genkai. Relative discrete series of line bundles over bounded symmetric domains. Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1011-1026. doi : 10.5802/aif.1538. https://www.numdam.org/articles/10.5802/aif.1538/

[CM] W. Casselman & D. Milićic, Asymptotic behaviour of matrix coefficients of admissible representations, Duke Math. J., 49 (1982), 869-930. | MR | Zbl

[FK] J. Faraut & A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 89 (1990), 64-89. | MR | Zbl

[HC] Harish-Chandra, Representations of semisimple Lie groups IV, Amer. J. Math., 77 (1955), 743-777. | MR | Zbl

[He] S. Helgason, Groups and geometric analysis, Academic Press, London, 1984. | Zbl

[JP] S. Janson & J. Peetre, A new generalization of Hankel operators, Math. Nachr., 132 (1987), 313-328. | MR | Zbl

[J] K. D. Johnson, On a ring of invariant polynomials on a Hermitian symmetric space, J. of Algebra, 67 (1980), 72-81. | MR | Zbl

[LP] H. Liu & L. Peng, Weighted Plancherel formula. Irreducible unitary representations and eigenspace representations, Math. Scand., 72 (1993), 99-119. | Zbl

[L] O. Loos, Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977. | Zbl

[OZ1] B. Ørsted & G. Zhang, Tensor products of analytic continuations of holomorphic discrete series, preprint, 1994.

[OZ2] B. Ørsted & G. Zhang, in preparation.

[P] J. Peetre, Covariant Laplaceans and Cauchy-Riemann operators for a Cartan domain, manuscript.

[PPZ] J. Peetre, L. Peng & G. Zhang, A weighted Plancherel formula I. The case of the unit disk. Application to Hankel operators, technical report, Stockholm, 1990.

[PZ] J. Peetre & G. Zhang, A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math., 43 (1992), 273-301. | Zbl

[Re] J. Repka, Tensor products of holomorphic discrete series, Can. J. Math., 31 (1979), 836-844. | MR | Zbl

[Sa] I. Satake, Algebraic structures of symmetric domains, Iwanami Shoten and Princeton Univ. Press, Tokyo and Princeton, NJ, 1980. | MR | Zbl

[Sch] H. Schlichtkrull, One-dimensional K-types in finite dimensional representations of semisimple Lie groups : A generalization of Helgason's theorem, Math. Scand., 54 (1984), 279-294. | MR | Zbl

[Sh] N. Shimeno, The Plancherel formula for spherical functions with one-dimensional K-type on a simply connected simple Lie group of Hermitian type, J. Funct. Anal., 121 (1994), 331-388. | MR | Zbl

[Up] H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25. | MR | Zbl

[W] N. Wallach, The analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc., 251 (1979), 1-17; 19-37. | MR | Zbl

[Ze] D. P. Zelobenko, Compact Lie groups and their representations, Amer. Math. Soc., Transl. Math. Monographs, vol. 40, Providence, Rhode Island, 1973. | Zbl

[Zh1] G. Zhang, Ha-plitz operators between Moebius invariant subspaces, Math. Scand., 71 (1992), 69-84. | MR | Zbl

[Zh2] G. Zhang, A weighted Plancherel formula II. The case of the ball, Studia Math., 102 (1992), 103-120. | MR | Zbl

  • Engliš, Miroslav; Youssfi, El-Hassan; Zhang, Genkai Weighted Bergman kernels for nearly holomorphic functions on bounded symmetric domains, Journal of Functional Analysis, Volume 286 (2024) no. 2, p. 110213 | DOI:10.1016/j.jfa.2023.110213
  • Ørsted, Bent; Vargas, Jorge A. Branching problems in reproducing kernel spaces, Duke Mathematical Journal, Volume 169 (2020) no. 18 | DOI:10.1215/00127094-2020-0032
  • Airault, Hélène; Boussejra, Abdelhamid Lifted infinitesimal holomorphic representation for the n -dimensional complex hyperbolic ball and for Cartan domains of type I, Bulletin des Sciences Mathématiques, Volume 137 (2013) no. 7, p. 923 | DOI:10.1016/j.bulsci.2013.06.004
  • Koufany, Khalid; Zhang, Genkai Hua operators, Poisson transform and relative discrete series on line bundles over bounded symmetric domains, Journal of Functional Analysis, Volume 262 (2012) no. 9, p. 4140 | DOI:10.1016/j.jfa.2012.02.012

Cité par 4 documents. Sources : Crossref