Cet article est une étude de la série relative discrète de l’espace des sections
We study the relative discrete series of the
@article{AIF_1996__46_4_1011_0, author = {Dooley, Anthony H. and {\O}rsted, Bent and Zhang, Genkai}, title = {Relative discrete series of line bundles over bounded symmetric domains}, journal = {Annales de l'Institut Fourier}, pages = {1011--1026}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {4}, year = {1996}, doi = {10.5802/aif.1538}, mrnumber = {98b:22028}, zbl = {0853.22011}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1538/} }
TY - JOUR AU - Dooley, Anthony H. AU - Ørsted, Bent AU - Zhang, Genkai TI - Relative discrete series of line bundles over bounded symmetric domains JO - Annales de l'Institut Fourier PY - 1996 SP - 1011 EP - 1026 VL - 46 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1538/ DO - 10.5802/aif.1538 LA - en ID - AIF_1996__46_4_1011_0 ER -
%0 Journal Article %A Dooley, Anthony H. %A Ørsted, Bent %A Zhang, Genkai %T Relative discrete series of line bundles over bounded symmetric domains %J Annales de l'Institut Fourier %D 1996 %P 1011-1026 %V 46 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1538/ %R 10.5802/aif.1538 %G en %F AIF_1996__46_4_1011_0
Dooley, Anthony H.; Ørsted, Bent; Zhang, Genkai. Relative discrete series of line bundles over bounded symmetric domains. Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1011-1026. doi : 10.5802/aif.1538. https://www.numdam.org/articles/10.5802/aif.1538/
[CM] Asymptotic behaviour of matrix coefficients of admissible representations, Duke Math. J., 49 (1982), 869-930. | MR | Zbl
& ,[FK] Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 89 (1990), 64-89. | MR | Zbl
& ,[HC] Representations of semisimple Lie groups IV, Amer. J. Math., 77 (1955), 743-777. | MR | Zbl
,[He] Groups and geometric analysis, Academic Press, London, 1984. | Zbl
,[JP] A new generalization of Hankel operators, Math. Nachr., 132 (1987), 313-328. | MR | Zbl
& ,[J] On a ring of invariant polynomials on a Hermitian symmetric space, J. of Algebra, 67 (1980), 72-81. | MR | Zbl
,[LP] Weighted Plancherel formula. Irreducible unitary representations and eigenspace representations, Math. Scand., 72 (1993), 99-119. | Zbl
& ,[L] Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977. | Zbl
,[OZ1] Tensor products of analytic continuations of holomorphic discrete series, preprint, 1994.
& ,[OZ2]
& , in preparation.[P] Covariant Laplaceans and Cauchy-Riemann operators for a Cartan domain, manuscript.
,[PPZ] A weighted Plancherel formula I. The case of the unit disk. Application to Hankel operators, technical report, Stockholm, 1990.
, & ,[PZ] A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math., 43 (1992), 273-301. | Zbl
& ,[Re] Tensor products of holomorphic discrete series, Can. J. Math., 31 (1979), 836-844. | MR | Zbl
,[Sa] Algebraic structures of symmetric domains, Iwanami Shoten and Princeton Univ. Press, Tokyo and Princeton, NJ, 1980. | MR | Zbl
,[Sch] One-dimensional K-types in finite dimensional representations of semisimple Lie groups : A generalization of Helgason's theorem, Math. Scand., 54 (1984), 279-294. | MR | Zbl
,[Sh] The Plancherel formula for spherical functions with one-dimensional K-type on a simply connected simple Lie group of Hermitian type, J. Funct. Anal., 121 (1994), 331-388. | MR | Zbl
,[Up] Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math., 108 (1986), 1-25. | MR | Zbl
,[W] The analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc., 251 (1979), 1-17; 19-37. | MR | Zbl
,[Ze] Compact Lie groups and their representations, Amer. Math. Soc., Transl. Math. Monographs, vol. 40, Providence, Rhode Island, 1973. | Zbl
,[Zh1] Ha-plitz operators between Moebius invariant subspaces, Math. Scand., 71 (1992), 69-84. | MR | Zbl
,[Zh2] A weighted Plancherel formula II. The case of the ball, Studia Math., 102 (1992), 103-120. | MR | Zbl
,- Weighted Bergman kernels for nearly holomorphic functions on bounded symmetric domains, Journal of Functional Analysis, Volume 286 (2024) no. 2, p. 110213 | DOI:10.1016/j.jfa.2023.110213
- Branching problems in reproducing kernel spaces, Duke Mathematical Journal, Volume 169 (2020) no. 18 | DOI:10.1215/00127094-2020-0032
- Lifted infinitesimal holomorphic representation for the n -dimensional complex hyperbolic ball and for Cartan domains of type I, Bulletin des Sciences Mathématiques, Volume 137 (2013) no. 7, p. 923 | DOI:10.1016/j.bulsci.2013.06.004
- Hua operators, Poisson transform and relative discrete series on line bundles over bounded symmetric domains, Journal of Functional Analysis, Volume 262 (2012) no. 9, p. 4140 | DOI:10.1016/j.jfa.2012.02.012
Cité par 4 documents. Sources : Crossref