Soit
Dans cet article nous formulons une généralisation de cette conjecture, pour essayer de comprendre les valeurs
Suppose
In this paper we formulate an extension of this conjecture, to attempt to understand the values
@article{AIF_1996__46_1_33_0, author = {Rubin, Karl}, title = {A {Stark} conjecture {\textquotedblleft}over ${\bf Z}${\textquotedblright} for abelian $L$-functions with multiple zeros}, journal = {Annales de l'Institut Fourier}, pages = {33--62}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {1}, year = {1996}, doi = {10.5802/aif.1505}, mrnumber = {97d:11174}, zbl = {0834.11044}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1505/} }
TY - JOUR AU - Rubin, Karl TI - A Stark conjecture “over ${\bf Z}$” for abelian $L$-functions with multiple zeros JO - Annales de l'Institut Fourier PY - 1996 SP - 33 EP - 62 VL - 46 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1505/ DO - 10.5802/aif.1505 LA - en ID - AIF_1996__46_1_33_0 ER -
%0 Journal Article %A Rubin, Karl %T A Stark conjecture “over ${\bf Z}$” for abelian $L$-functions with multiple zeros %J Annales de l'Institut Fourier %D 1996 %P 33-62 %V 46 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1505/ %R 10.5802/aif.1505 %G en %F AIF_1996__46_1_33_0
Rubin, Karl. A Stark conjecture “over ${\bf Z}$” for abelian $L$-functions with multiple zeros. Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 33-62. doi : 10.5802/aif.1505. https://www.numdam.org/articles/10.5802/aif.1505/
[1] Cohomology of groups, Grad. Texts in Math., 87, New York, Springer (1982). | MR | Zbl
,[2] Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286. | MR | Zbl
, ,[3] Remarques sur les unités cyclotomiques et les unités elliptiques, J. Number Theory, 11 (1979), 21-48. | MR | Zbl
,[4] On the values of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo, 35 (1988), 177-197. | MR | Zbl
,[5] Sur la représentation exponentielle dans les corps relativement galoisiens de nombers p-adiques, Acta Arith., 3 (1939), 133-173. | JFM
,[6] Solution of the class number 2 problem for cyclotomic fields, Invent. Math., 28 (1975), 243-244. | MR | Zbl
,[7] Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. | MR | Zbl
, ,[8] Stark units and Kolyvagin's Euler systems, J. für die reine und angew. Math., 425 (1992), 141-154. | MR | Zbl
,[9] Stark's conjecture and abelian L-functions with higher order zeros at s = 0, Advances in Math., 66 (1987), 62-87. | MR | Zbl
,[10] L-functions at s = 1 I, II, III, IV, Advances in Math., 7 (1971), 301-343, 17 (1975), 60-92, 22 (1976), 64-84, 35 (1980), 197-235. | Zbl
,[11] Les conjectures de Stark sur les fonctions L d'Artin en s = 0, Prog. in Math., 47, Boston, Birkhäuser (1984). | Zbl
,[12] An exact sequence in Galois cohomology, Proc. Amer. Math. Soc., 16 (1965), 837-840. | MR | Zbl
,[13] K-theory of finite groups and orders, Lecture notes in Math., 149, New York, Springer (1970). | MR | Zbl
,Cité par Sources :