La trilogie du moment
Annales de l'Institut Fourier, Tome 45 (1995) no. 3, pp. 825-857.

A toute deux-forme fermée, sur une variété connexe, on associe une famille d’extensions centrales du groupe de ses automorphismes par son tore des périodes. On discute ensuite quelques propriétés de cette construction.

We associate to each closed 2-form, defined on a connected manifold, a family of central extensions of its group of automorphisms by its torus of periods. Then, we discuss some properties of this construction.

@article{AIF_1995__45_3_825_0,
     author = {Iglesias, Patrick},
     title = {La trilogie du moment},
     journal = {Annales de l'Institut Fourier},
     pages = {825--857},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {45},
     number = {3},
     year = {1995},
     doi = {10.5802/aif.1476},
     mrnumber = {96i:58186},
     zbl = {0836.58001},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.1476/}
}
TY  - JOUR
AU  - Iglesias, Patrick
TI  - La trilogie du moment
JO  - Annales de l'Institut Fourier
PY  - 1995
SP  - 825
EP  - 857
VL  - 45
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1476/
DO  - 10.5802/aif.1476
LA  - fr
ID  - AIF_1995__45_3_825_0
ER  - 
%0 Journal Article
%A Iglesias, Patrick
%T La trilogie du moment
%J Annales de l'Institut Fourier
%D 1995
%P 825-857
%V 45
%N 3
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1476/
%R 10.5802/aif.1476
%G fr
%F AIF_1995__45_3_825_0
Iglesias, Patrick. La trilogie du moment. Annales de l'Institut Fourier, Tome 45 (1995) no. 3, pp. 825-857. doi : 10.5802/aif.1476. https://www.numdam.org/articles/10.5802/aif.1476/

[Bot78] R. Bott, On some formulas for the characteristic classes of group actions, differential topology, foliations and Gelfand-Fuchs cohomology, in Proceed. Rio de Janeiro, 1976, volume 652 of Springer Lectures Notes, Springer Verlag, 1978. | Zbl

[Bry90] J.-L. Brylinski, The Kaehler geometry of the space of knots in a smooth threefold, preprint, Pensylvania State University, 1990.

[Bry93] J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Birkäuser, 1993. | MR | Zbl

[Che77] K.T. Chen, Iterated path integral, Bull. of Am. Math. Soc., 83 (5) (1977), 831-879. | MR | Zbl

[GF68] I. Gelfand and D. Fuchs, Cohomology of the Lie algebra of vector fields on the circle. Functional Analysis and Applications, 2 (1968), 342-343.

[Hae72] A. Haefliger, Sur les classes caractéristiques des feuilletages, Publications séminaires, Séminaire Bourbaki, juin 1972. | Numdam

[Igl85] P. Iglesias, Fibrés difféologiques et homotopie, Thèse de doctorat d'état, Université de Provence, Marseille, 1985.

[Kir74] A.A. Kirillov, Élements de la théorie des représentations, MIR, Moscou, 1974.

[Kir82] A.A. Kirillov, Infinite dimensional Lie groups : their orbits, invariants and representations, vol. 970, Springer-Verlag, 1982. | MR | Zbl

[KM85] M. Kargapalov et Iou. Merzliakov, Élements de la théorie des groupes, MIR, Moscou, 1985.

[McL71] S. Mclane, Homology, Springer Verlag, New York-Heidelberg-Berlin, 1967.

[Sou70] J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970. | MR | Zbl

[Sou84] J.-M. Souriau, Groupes différentiels et physique mathématique, Collection travaux en cours, 1984, 75-79. | MR | Zbl

  • Donato, Paul; Iglesias-Zemmour, Patrick Every symplectic manifold is a (linear) coadjoint orbit, Canadian Mathematical Bulletin, Volume 65 (2022) no. 2, p. 345 | DOI:10.4153/s000843952100031x
  • Androulidakis, Iakovos; Antonini, Paolo Integrable lifts for transitive Lie algebroids, International Journal of Mathematics, Volume 29 (2018) no. 09, p. 1850062 | DOI:10.1142/s0129167x18500623
  • Magnot, Jean-Pierre; Watts, Jordan The diffeology of Milnor's classifying space, Topology and its Applications, Volume 232 (2017), p. 189 | DOI:10.1016/j.topol.2017.10.011
  • Wockel, Christoph Categorified central extensions, étale Lie 2-groups and Lieʼs Third Theorem for locally exponential Lie algebras, Advances in Mathematics, Volume 228 (2011) no. 4, p. 2218 | DOI:10.1016/j.aim.2011.07.003
  • Wockel, Christoph Principal 2-bundles and their gauge 2-groups, Forum Mathematicum, Volume 23 (2011) no. 3 | DOI:10.1515/form.2011.020
  • Iglesias-Zemmour, Patrick Dimension in diffeology, Indagationes Mathematicae, Volume 18 (2007) no. 4, p. 555 | DOI:10.1016/s0019-3577(07)80062-0
  • Léandre, Rémi Stochastic Diffeology and Homotopy, Stochastic Analysis and Mathematical Physics (2001), p. 51 | DOI:10.1007/978-1-4612-0127-4_3
  • Duval, Christian; Guieu, Laurent The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet, Journal of Geometry and Physics, Volume 33 (2000) no. 1-2, p. 103 | DOI:10.1016/s0393-0440(99)00029-7
  • Léandre, Rémi A sheaf-theoretical approach to stochastic cohomology, Reports on Mathematical Physics, Volume 46 (2000) no. 1-2, p. 157 | DOI:10.1016/s0034-4877(01)80019-7
  • Roger, Claude Extensions centrales d'algèbres et de groupes de lie de dimension infinie, algèbre de virasoro et généralisations, Reports on Mathematical Physics, Volume 35 (1995) no. 2-3, p. 225 | DOI:10.1016/0034-4877(96)89288-3

Cité par 10 documents. Sources : Crossref