Le résultat principal de cet article implique que si une variété abélienne définie sur un corps
The main result of this paper implies that if an abelian variety over a field
@article{AIF_1995__45_2_403_0, author = {Silverberg, Alice and Zarhin, Yuri G.}, title = {Semistable reduction and torsion subgroups of abelian varieties}, journal = {Annales de l'Institut Fourier}, pages = {403--420}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {2}, year = {1995}, doi = {10.5802/aif.1459}, mrnumber = {96h:11057}, zbl = {0818.14017}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1459/} }
TY - JOUR AU - Silverberg, Alice AU - Zarhin, Yuri G. TI - Semistable reduction and torsion subgroups of abelian varieties JO - Annales de l'Institut Fourier PY - 1995 SP - 403 EP - 420 VL - 45 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1459/ DO - 10.5802/aif.1459 LA - en ID - AIF_1995__45_2_403_0 ER -
%0 Journal Article %A Silverberg, Alice %A Zarhin, Yuri G. %T Semistable reduction and torsion subgroups of abelian varieties %J Annales de l'Institut Fourier %D 1995 %P 403-420 %V 45 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1459/ %R 10.5802/aif.1459 %G en %F AIF_1995__45_2_403_0
Silverberg, Alice; Zarhin, Yuri G. Semistable reduction and torsion subgroups of abelian varieties. Annales de l'Institut Fourier, Tome 45 (1995) no. 2, pp. 403-420. doi : 10.5802/aif.1459. https://www.numdam.org/articles/10.5802/aif.1459/
[1] Modular functions of one variable IV, Lecture Notes in Math. 476, Springer, New York, 1975, pp. 74-144. | Zbl
and , eds.,[2] Néron models, Springer, Berlin-Heidelberg-New York, 1990. | Zbl
, , ,[3] Néron models and tame ramification, Comp. Math., 81 (1992), 291-306. | Numdam | MR | Zbl
,[4] Sur les points de torsion des courbes elliptiques, Astérisque, Société Math. de France, 183 (1990), 25-36. | Numdam | MR | Zbl
and ,[5] Some remarks concerning points of finite order on elliptic curves over global fields, Ark. Mat., 15 (1977), 1-19. | MR | Zbl
,[6] Local fields, in Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Thompson Book Company, Washington, 1967, pp. 1-41.
,[7] Modèles de Néron et monodromie, in Groupes de monodromie en géometrie algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in Math. 288, Springer, Berlin-Heidelberg-New York, 1972, pp. 313-523. | MR | Zbl
,[8] Abelian varieties having purely additive reduction, J. Pure and Applied Algebra, 36 (1985), 281-298. | MR | Zbl
and ,[9] On the group of components of a Néron model, J. reine angew. Math., 445 (1993), 109-160. | MR | Zbl
,[10] Gesammelte Abhandlungen, Bd. I, Leipzig, 1911, pp. 212-218 (Zur Theorie der positiven quadratischen Formen, J. reine angew. Math., 101 (1887), 196-202). | JFM
,[11] Abelian varieties, Second Edition, Tata Lecture Notes, Oxford University Press, London, 1974.
,[12] Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser, Boston-Basel-Stuttgart, 1984. | Zbl
,[13] Rigidité du foncteur de Jacobi d'echelon n ≥ 3, Appendix to A. Grothendieck, Techniques de construction en géométrie analytique, X. Construction de l'espace de Teichmüller, Séminaire Henri Cartan, 1960/1961, no. 17.
,[14] Good reduction of abelian varieties, Ann. of Math., 88 (1968), 492-517. | MR | Zbl
and ,[15] Isogenies of abelian varieties, J. Pure and Applied Algebra, 90 (1993), 23-37. | MR | Zbl
and ,[16] The Néron fiber of abelian varieties with potential good reduction, Math. Ann., 264 (1983), 1-3. | MR | Zbl
,[17] Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948. | MR | Zbl
,- Rational torsion points on abelian surfaces with quaternionic multiplication, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.105
- Purely additive reduction of abelian varieties with torsion, Journal of Number Theory, Volume 239 (2022), p. 21 | DOI:10.1016/j.jnt.2021.10.015
- Minimal models of rational elliptic curves with non-trivial torsion, Research in Number Theory, Volume 8 (2022) no. 1 | DOI:10.1007/s40993-021-00296-4
- Bertini and Northcott, Research in Number Theory, Volume 7 (2021) no. 1 | DOI:10.1007/s40993-021-00236-2
- Chow’s Theorem for Semi-abelian Varieties and Bounds for Splitting Fields of Algebraic Tori, Acta Mathematica Sinica, English Series, Volume 35 (2019) no. 9, p. 1453 | DOI:10.1007/s10114-019-8269-9
- Pursuing polynomial bounds on torsion, Israel Journal of Mathematics, Volume 227 (2018) no. 2, p. 889 | DOI:10.1007/s11856-018-1751-8
- Néron models, European Journal of Mathematics, Volume 3 (2017) no. 2, p. 171 | DOI:10.1007/s40879-017-0134-8
- Anabelian geometry and descent obstructions on moduli spaces, Algebra Number Theory, Volume 10 (2016) no. 6, p. 1191 | DOI:10.2140/ant.2016.10.1191
- Uniform bounds for the number of rational points on curves of small Mordell–Weil rank, Duke Mathematical Journal, Volume 165 (2016) no. 16 | DOI:10.1215/00127094-3673558
- Isogenies of abelian varieties over finite fields, Designs, Codes and Cryptography, Volume 77 (2015) no. 2-3, p. 427 | DOI:10.1007/s10623-015-0078-2
- Heights and regulators of number fields and elliptic curves, Publications mathématiques de Besançon. Algèbre et théorie des nombres (2015) no. 2, p. 47 | DOI:10.5802/pmb.8
- Reduction of Abelian Varieties, The Arithmetic and Geometry of Algebraic Cycles (2000), p. 495 | DOI:10.1007/978-94-011-4098-0_19
- Subgroups of Inertia Groups Arising from Abelian Varieties, Journal of Algebra, Volume 209 (1998) no. 1, p. 94 | DOI:10.1006/jabr.1998.7523
- Semistable reduction of abelian varieties over extensions of small degree, Journal of Pure and Applied Algebra, Volume 132 (1998) no. 2, p. 179 | DOI:10.1016/s0022-4049(98)80026-1
- Explicit Families of Elliptic Curves with Prescribed Mod N Representations, Modular Forms and Fermat’s Last Theorem (1997), p. 447 | DOI:10.1007/978-1-4612-1974-3_15
- Variations on a theme of Minkowski and Serre, Journal of Pure and Applied Algebra, Volume 111 (1996) no. 1-3, p. 285 | DOI:10.1016/0022-4049(95)00113-1
- Hodge groups of abelian varieties with purely multiplicative reduction, Известия Российской академии наук. Серия математическая, Volume 60 (1996) no. 2, p. 149 | DOI:10.4213/im74
Cité par 17 documents. Sources : Crossref