Semistable reduction and torsion subgroups of abelian varieties
Annales de l'Institut Fourier, Tome 45 (1995) no. 2, pp. 403-420.

Le résultat principal de cet article implique que si une variété abélienne définie sur un corps F a un sous-groupe isotropique maximal dont les points d’ordre n sont définis sur F, et n5, alors la variété abélienne a une réduction semi-stable en dehors de n. Ce résultat peut être considéré comme une extension du théorème de Raynaud que si une variété abélienne a tous ses points d’ordre n définis sur F avec n3, alors la variété abélienne a une réduction semi-stable en dehors de n. Nous donnons aussi des renseignements sur les modèles de Néron dans les cas où n=2,3 ou 4.

The main result of this paper implies that if an abelian variety over a field F has a maximal isotropic subgroup of n-torsion points all of which are defined over F, and n5, then the abelian variety has semistable reduction away from n. This result can be viewed as an extension of Raynaud’s theorem that if an abelian variety and all its n-torsion points are defined over a field F and n3, then the abelian variety has semistable reduction away from n. We also give information about the Néron models in the cases where n=2,3 and 4.

@article{AIF_1995__45_2_403_0,
     author = {Silverberg, Alice and Zarhin, Yuri G.},
     title = {Semistable reduction and torsion subgroups of abelian varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {403--420},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {45},
     number = {2},
     year = {1995},
     doi = {10.5802/aif.1459},
     mrnumber = {96h:11057},
     zbl = {0818.14017},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1459/}
}
TY  - JOUR
AU  - Silverberg, Alice
AU  - Zarhin, Yuri G.
TI  - Semistable reduction and torsion subgroups of abelian varieties
JO  - Annales de l'Institut Fourier
PY  - 1995
SP  - 403
EP  - 420
VL  - 45
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1459/
DO  - 10.5802/aif.1459
LA  - en
ID  - AIF_1995__45_2_403_0
ER  - 
%0 Journal Article
%A Silverberg, Alice
%A Zarhin, Yuri G.
%T Semistable reduction and torsion subgroups of abelian varieties
%J Annales de l'Institut Fourier
%D 1995
%P 403-420
%V 45
%N 2
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1459/
%R 10.5802/aif.1459
%G en
%F AIF_1995__45_2_403_0
Silverberg, Alice; Zarhin, Yuri G. Semistable reduction and torsion subgroups of abelian varieties. Annales de l'Institut Fourier, Tome 45 (1995) no. 2, pp. 403-420. doi : 10.5802/aif.1459. https://www.numdam.org/articles/10.5802/aif.1459/

[1] B. Birch and W. Kuyk, eds., Modular functions of one variable IV, Lecture Notes in Math. 476, Springer, New York, 1975, pp. 74-144. | Zbl

[2] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer, Berlin-Heidelberg-New York, 1990. | Zbl

[3] B. Edixhoven, Néron models and tame ramification, Comp. Math., 81 (1992), 291-306. | Numdam | MR | Zbl

[4] M. Flexor and J. Oesterlé, Sur les points de torsion des courbes elliptiques, Astérisque, Société Math. de France, 183 (1990), 25-36. | Numdam | MR | Zbl

[5] G. Frey, Some remarks concerning points of finite order on elliptic curves over global fields, Ark. Mat., 15 (1977), 1-19. | MR | Zbl

[6] A. Fröhlich, Local fields, in Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich, eds., Thompson Book Company, Washington, 1967, pp. 1-41.

[7] A. Grothendieck, Modèles de Néron et monodromie, in Groupes de monodromie en géometrie algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in Math. 288, Springer, Berlin-Heidelberg-New York, 1972, pp. 313-523. | MR | Zbl

[8] H. Lenstra and F. Oort, Abelian varieties having purely additive reduction, J. Pure and Applied Algebra, 36 (1985), 281-298. | MR | Zbl

[9] D. Lorenzini, On the group of components of a Néron model, J. reine angew. Math., 445 (1993), 109-160. | MR | Zbl

[10] H. Minkowski, Gesammelte Abhandlungen, Bd. I, Leipzig, 1911, pp. 212-218 (Zur Theorie der positiven quadratischen Formen, J. reine angew. Math., 101 (1887), 196-202). | JFM

[11] D. Mumford, Abelian varieties, Second Edition, Tata Lecture Notes, Oxford University Press, London, 1974.

[12] D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser, Boston-Basel-Stuttgart, 1984. | Zbl

[13] J-P. Serre, Rigidité du foncteur de Jacobi d'echelon n ≥ 3, Appendix to A. Grothendieck, Techniques de construction en géométrie analytique, X. Construction de l'espace de Teichmüller, Séminaire Henri Cartan, 1960/1961, no. 17.

[14] J-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math., 88 (1968), 492-517. | MR | Zbl

[15] A. Silverberg and Yu. G. Zarhin, Isogenies of abelian varieties, J. Pure and Applied Algebra, 90 (1993), 23-37. | MR | Zbl

[16] J. H. Silverman, The Néron fiber of abelian varieties with potential good reduction, Math. Ann., 264 (1983), 1-3. | MR | Zbl

[17] A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948. | MR | Zbl

  • Laga, Jef; Schembri, Ciaran; Shnidman, Ari; Voight, John Rational torsion points on abelian surfaces with quaternionic multiplication, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.105
  • Melistas, Mentzelos Purely additive reduction of abelian varieties with torsion, Journal of Number Theory, Volume 239 (2022), p. 21 | DOI:10.1016/j.jnt.2021.10.015
  • Barrios, Alexander J. Minimal models of rational elliptic curves with non-trivial torsion, Research in Number Theory, Volume 8 (2022) no. 1 | DOI:10.1007/s40993-021-00296-4
  • Pazuki, Fabien; Widmer, Martin Bertini and Northcott, Research in Number Theory, Volume 7 (2021) no. 1 | DOI:10.1007/s40993-021-00236-2
  • Yu, Chia Fu Chow’s Theorem for Semi-abelian Varieties and Bounds for Splitting Fields of Algebraic Tori, Acta Mathematica Sinica, English Series, Volume 35 (2019) no. 9, p. 1453 | DOI:10.1007/s10114-019-8269-9
  • Clark, Pete L.; Pollack, Paul Pursuing polynomial bounds on torsion, Israel Journal of Mathematics, Volume 227 (2018) no. 2, p. 889 | DOI:10.1007/s11856-018-1751-8
  • Lorenzini, Dino Néron models, European Journal of Mathematics, Volume 3 (2017) no. 2, p. 171 | DOI:10.1007/s40879-017-0134-8
  • Patrikis, Stefan; Voloch, José; Zarhin, Yuri Anabelian geometry and descent obstructions on moduli spaces, Algebra Number Theory, Volume 10 (2016) no. 6, p. 1191 | DOI:10.2140/ant.2016.10.1191
  • Katz, Eric; Rabinoff, Joseph; Zureick-Brown, David Uniform bounds for the number of rational points on curves of small Mordell–Weil rank, Duke Mathematical Journal, Volume 165 (2016) no. 16 | DOI:10.1215/00127094-3673558
  • Silverberg, Alice; Zarhin, Yuri G. Isogenies of abelian varieties over finite fields, Designs, Codes and Cryptography, Volume 77 (2015) no. 2-3, p. 427 | DOI:10.1007/s10623-015-0078-2
  • Pazuki, Fabien Heights and regulators of number fields and elliptic curves, Publications mathématiques de Besançon. Algèbre et théorie des nombres (2015) no. 2, p. 47 | DOI:10.5802/pmb.8
  • Silverberg, A.; Zarhin, Yu. G. Reduction of Abelian Varieties, The Arithmetic and Geometry of Algebraic Cycles (2000), p. 495 | DOI:10.1007/978-94-011-4098-0_19
  • Silverberg, A; Zarhin, Yu.G Subgroups of Inertia Groups Arising from Abelian Varieties, Journal of Algebra, Volume 209 (1998) no. 1, p. 94 | DOI:10.1006/jabr.1998.7523
  • Silverberg, A.; Zarhin, Yu.G. Semistable reduction of abelian varieties over extensions of small degree, Journal of Pure and Applied Algebra, Volume 132 (1998) no. 2, p. 179 | DOI:10.1016/s0022-4049(98)80026-1
  • Silverberg, Alice Explicit Families of Elliptic Curves with Prescribed Mod N Representations, Modular Forms and Fermat’s Last Theorem (1997), p. 447 | DOI:10.1007/978-1-4612-1974-3_15
  • Silverberg, A.; Zarhin, Yu.G. Variations on a theme of Minkowski and Serre, Journal of Pure and Applied Algebra, Volume 111 (1996) no. 1-3, p. 285 | DOI:10.1016/0022-4049(95)00113-1
  • Силверберг, А; Silverberg, A; Зархин, Юрий Геннадьевич; Zarhin, Yurii Gennad'evich Hodge groups of abelian varieties with purely multiplicative reduction, Известия Российской академии наук. Серия математическая, Volume 60 (1996) no. 2, p. 149 | DOI:10.4213/im74

Cité par 17 documents. Sources : Crossref