A new proof of multisummability of formal solutions of non linear meromorphic differential equations
Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 811-848.

Nous donnons une nouvelle preuve de la multisommabilité des solutions séries formelles des équations différentielles méromorphes non linéaires. Nous utilisons une définition récente de la multisommabilité due à B. Malgrange et J.-P. Ramis. La première démonstration du résultat central est due à B. Braaksma. Notre méthode est très différente : Braaksma utilisait la définition de J. Écalle de la multisommabilité et la transformation de Laplace. Partant d’une forme normale préliminaire

xdydx=G0(x)+λ(x)+A0y+xμG(x,y),

l’idée de notre démonstration est de représenter une solution série formelle par une cochaîne holomorphe, dont le cobord est exponentiellement petit d’un certain ordre. Ensuite on augmente cet ordre en un nombre fini d’étapes. (Pour cela on utilise la connaissance des pentes d’un polygone de Newton.) Le lemme clé est basé sur des réductions à des formes normales résonnantes et sur l’analyse détaillée de phénomènes de Stokes non linéaires.

We give a new proof of multisummability of formal power series solutions of a non linear meromorphic differential equation. We use the recent Malgrange-Ramis definition of multisummability. The first proof of the main result is due to B. Braaksma. Our method of proof is very different: Braaksma used Écalle definition of multisummability and Laplace transform. Starting from a preliminary normal form of the differential equation

xdydx=G0(x)+λ(x)+A0y+xμG(x,y),

the idea of our proof is to interpret a formal power series solution as a holomorphic cochain, whose coboundary is exponentially small of some order. Then we increase this order in a finite number of steps. (In this process we use the knowledge of the slopes of a Newton polygon.) The key lemma is based on reductions to some resonant normal forms and on a precise description of some non linear Stokes phenomena.

@article{AIF_1994__44_3_811_0,
     author = {Ramis, Jean-Pierre and Sibuya, Yasutaka},
     title = {A new proof of multisummability of formal solutions of non linear meromorphic differential equations},
     journal = {Annales de l'Institut Fourier},
     pages = {811--848},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {44},
     number = {3},
     year = {1994},
     doi = {10.5802/aif.1418},
     mrnumber = {95h:34012},
     zbl = {0812.34005},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1418/}
}
TY  - JOUR
AU  - Ramis, Jean-Pierre
AU  - Sibuya, Yasutaka
TI  - A new proof of multisummability of formal solutions of non linear meromorphic differential equations
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 811
EP  - 848
VL  - 44
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1418/
DO  - 10.5802/aif.1418
LA  - en
ID  - AIF_1994__44_3_811_0
ER  - 
%0 Journal Article
%A Ramis, Jean-Pierre
%A Sibuya, Yasutaka
%T A new proof of multisummability of formal solutions of non linear meromorphic differential equations
%J Annales de l'Institut Fourier
%D 1994
%P 811-848
%V 44
%N 3
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1418/
%R 10.5802/aif.1418
%G en
%F AIF_1994__44_3_811_0
Ramis, Jean-Pierre; Sibuya, Yasutaka. A new proof of multisummability of formal solutions of non linear meromorphic differential equations. Annales de l'Institut Fourier, Tome 44 (1994) no. 3, pp. 811-848. doi : 10.5802/aif.1418. https://www.numdam.org/articles/10.5802/aif.1418/

[1] W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations, Asymptotic Analysis, 5 (1991), 27-45. | MR | Zbl

[2] B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations, J. Differential Equations, 92 (1991), 45-75. | MR | Zbl

[3] B.L.J. Braaksma, Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, Grenoble, 42-3 (1992), 517-540. | Numdam | MR | Zbl

[4] J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Act. Math., Ed. Hermann, Paris (1993).

[5] M. Hukuhara, Intégration formelle d'un système d'équations différentielles non linéaires dans le voisinage d'un point singulier, Ann. di Mat. Pura Appl., 19 (1940), 34-44. | JFM | MR | Zbl

[6] M. Iwano, Intégration analytique d'un système d'équations différentielles non linéaires dans le voisinage d'un point singulier, I, II, Ann. di Mat. Pura Appl., 44 (1957), 261-292 et 47 (1959), 91-150. | Zbl

[7] B. Malgrange and J.-P. Ramis, Fonctions multisommables, Ann. Inst. Fourier, Grenoble, 42, 1-2 (1992), 353-368. | Numdam | MR | Zbl

[8] J. Martinet and J.-P. Ramis, Elementary acceleration and multisummability, Ann. Inst. Henri Poincaré, Physique Théorique, 54 (1991), 331-401. | Numdam | MR | Zbl

[9] J.-P. Ramis, Les séries k-sommables et leurs applications, Analysis, Microlocal Calculus and Relativistic Quantum Theory, Proc. “Les Houches” 1979, Springer Lecture Notes in Physics, 126 (1980), 178-199.

[10] J.-P. Ramis and Y. Sibuya, Hukuhara's domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymptotic Analysis, 2 (1989), 39-94. | MR | Zbl

[11] Y. Sibuya, Normal forms and Stokes multipliers of non linear meromorphic differential equations, Computer Algebra and Differential Equations, 3 (1994), Academic Press.

[12] Y. Sibuya, Linear Differential Equations in the Complex Domain. Problems of Analytic Continuation, Transl. of Math. Monographs, Vol. 82, A. M. S., (1990). | Zbl

  • Rolin, Jean-Philippe; Servi, Tamara; Speissegger, Patrick Multisummability for generalized power series, Canadian Journal of Mathematics, Volume 76 (2024) no. 2, p. 458 | DOI:10.4153/s0008414x23000111
  • Ramis, Jean-Pierre Epilogue: Stokes Phenomena. Dynamics, Classification Problems and Avatars, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 383 | DOI:10.1007/978-3-031-54172-8_10
  • Barkatou, Moulay; Carnicero, Félix Álvaro; Sanz, Fernando Turrittin's normal forms for linear systems of meromorphic ODEs over the real field, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 79 | DOI:10.58997/ejde.2023.79
  • Tahara, Hidetoshi The Gevrey asymptotics in the initial value problem for singularly perturbed nonlinear differential equations, Journal of Differential Equations, Volume 373 (2023), p. 283 | DOI:10.1016/j.jde.2023.07.020
  • Kossovskiy, I.; Lamel, B.; Stolovitch, L. Equivalence of three-dimensional Cauchy-Riemann manifolds and multisummability theory, Advances in Mathematics, Volume 397 (2022), p. 108117 | DOI:10.1016/j.aim.2021.108117
  • López‐Hernanz, Lorena; Ribón, Javier; Sanz‐Sánchez, Fernando; Vivas, Liz Stable manifolds of biholomorphisms in CnCn asymptotic to formal curves, Proceedings of the London Mathematical Society, Volume 125 (2022) no. 2, p. 277 | DOI:10.1112/plms.12447
  • Lastra, A.; Malek, S. On Singularly Perturbed Linear Initial Value Problems with Mixed Irregular and Fuchsian Time Singularities, The Journal of Geometric Analysis, Volume 30 (2020) no. 4, p. 3872 | DOI:10.1007/s12220-019-00221-3
  • Jiménez-Garrido, Javier; Kamimoto, Shingo; Lastra, Alberto; Sanz, Javier Multisummability in Carleman ultraholomorphic classes by means of nonzero proximate orders, Journal of Mathematical Analysis and Applications, Volume 472 (2019) no. 1, p. 627 | DOI:10.1016/j.jmaa.2018.11.043
  • Sanz, Javier Asymptotic Analysis and Summability of Formal Power Series, Analytic, Algebraic and Geometric Aspects of Differential Equations (2017), p. 199 | DOI:10.1007/978-3-319-52842-7_4
  • Le Gal, Olivier; Sanz, Fernando; Speissegger, Patrick Trajectories in interlaced integral pencils of 3-dimensional analytic vector fields are o-minimal, Transactions of the American Mathematical Society, Volume 370 (2017) no. 3, p. 2211 | DOI:10.1090/tran/7205
  • Jiménez-Garrido, Javier; Sanz, Javier Strongly regular sequences and proximate orders, Journal of Mathematical Analysis and Applications, Volume 438 (2016) no. 2, p. 920 | DOI:10.1016/j.jmaa.2016.02.010
  • Lastra, Alberto; Malek, Stéphane On parametric multisummable formal solutions to some nonlinear initial value Cauchy problems, Advances in Difference Equations, Volume 2015 (2015) no. 1 | DOI:10.1186/s13662-015-0541-4
  • Gontsov, R.R.; Goryuchkina, I.V. On the convergence of generalized power series satisfying an algebraic ODE, Asymptotic Analysis, Volume 93 (2015) no. 4, p. 311 | DOI:10.3233/asy-151297
  • Lastra, Alberto; Malek, Stéphane; Sanz, Javier Summability in general Carleman ultraholomorphic classes, Journal of Mathematical Analysis and Applications, Volume 430 (2015) no. 2, p. 1175 | DOI:10.1016/j.jmaa.2015.05.046
  • Lastra, A.; Malek, S. On Parametric Gevrey Asymptotics for Some Cauchy Problems in Quasiperiodic Function Spaces, Abstract and Applied Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/153169
  • Malek, Stéphane On singularly perturbed small step size difference-differential nonlinear PDEs, Journal of Difference Equations and Applications, Volume 20 (2014) no. 1, p. 118 | DOI:10.1080/10236198.2013.813941
  • Lastra, Alberto; Malek, Stéphane; Sanz, Javier On Gevrey solutions of threefold singular nonlinear partial differential equations, Journal of Differential Equations, Volume 255 (2013) no. 10, p. 3205 | DOI:10.1016/j.jde.2013.07.031
  • Malek, S. On the summability of formal solutions for doubly singular nonlinear partial differential equations, Journal of Dynamical and Control Systems, Volume 18 (2012) no. 1, p. 45 | DOI:10.1007/s10883-012-9134-7
  • Balser, Werner; Röscheisen, Claudia; Steiner, Frank; Sträng, Eric Solutions of Systems of Linear Ordinary Differential Equations, Mathematical Analysis of Evolution, Information, and Complexity (2009), p. 73 | DOI:10.1002/9783527628025.ch2
  • Gillam, D. W. H.; Gurarii, V. P. On functions uniquely determined by their asymptotic expansion, Functional Analysis and Its Applications, Volume 40 (2006) no. 4, p. 273 | DOI:10.1007/s10688-006-0044-x
  • Гурарий, Владимир Петрович; Gurarii, Vladimir Petrovich; Гиллам, Д. У. Х.; Gillam, David W. H. О функциях, однозначно определяемых своими асимптотическими разложениями, Функциональный анализ и его приложения, Volume 40 (2006) no. 4, p. 33 | DOI:10.4213/faa852
  • Kichenassamy, Satyanad On a conjecture of Fefferman and Graham, Advances in Mathematics, Volume 184 (2004) no. 2, p. 268 | DOI:10.1016/s0001-8708(03)00145-2
  • Balser, Werner Multisummability of formal power series solutions of partial differential equations with constant coefficients, Journal of Differential Equations, Volume 201 (2004) no. 1, p. 63 | DOI:10.1016/j.jde.2004.02.002
  • Balser, Werner; Kostov, Vladimir Recent progress in the theory of formal solutions for ODE and PDE, Applied Mathematics and Computation, Volume 141 (2003) no. 1, p. 113 | DOI:10.1016/s0096-3003(02)00325-9
  • Biles, Daniel C.; Robinson, Mark P.; Spraker, John S. Analytic Solutions for a Class of Nonlinear Ordinary Differential Equations, Complex Variables, Theory and Application: An International Journal, Volume 48 (2003) no. 2, p. 143 | DOI:10.1080/0278107021000037156
  • Braaksma, B.L.J.; Faber, B.F.; Immink, G.K. Summation of formal solutions of a class of linear difference equations, Pacific Journal of Mathematics, Volume 195 (2000) no. 1, p. 35 | DOI:10.2140/pjm.2000.195.35
  • Ramis, Jean-Pierre; Schäfke, Reinhard Gevrey separation of fast and slow variables, Nonlinearity, Volume 9 (1996) no. 2, p. 353 | DOI:10.1088/0951-7715/9/2/004
  • Balser, W. First-level formal solutions and multisummability, Journal of Dynamical and Control Systems, Volume 1 (1995) no. 2, p. 203 | DOI:10.1007/bf02254639

Cité par 28 documents. Sources : Crossref