Remarks on Holmgren's uniqueness theorem
Annales de l'Institut Fourier, Tome 43 (1993) no. 5, pp. 1223-1251.
@article{AIF_1993__43_5_1223_0,
     author = {H\"ormander, Lars},
     title = {Remarks on {Holmgren's} uniqueness theorem},
     journal = {Annales de l'Institut Fourier},
     pages = {1223--1251},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {5},
     year = {1993},
     doi = {10.5802/aif.1371},
     mrnumber = {95b:35010},
     zbl = {0804.35004},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1371/}
}
TY  - JOUR
AU  - Hörmander, Lars
TI  - Remarks on Holmgren's uniqueness theorem
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 1223
EP  - 1251
VL  - 43
IS  - 5
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1371/
DO  - 10.5802/aif.1371
LA  - en
ID  - AIF_1993__43_5_1223_0
ER  - 
%0 Journal Article
%A Hörmander, Lars
%T Remarks on Holmgren's uniqueness theorem
%J Annales de l'Institut Fourier
%D 1993
%P 1223-1251
%V 43
%N 5
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1371/
%R 10.5802/aif.1371
%G en
%F AIF_1993__43_5_1223_0
Hörmander, Lars. Remarks on Holmgren's uniqueness theorem. Annales de l'Institut Fourier, Tome 43 (1993) no. 5, pp. 1223-1251. doi : 10.5802/aif.1371. https://www.numdam.org/articles/10.5802/aif.1371/

[1] J. Boman, Helgason's support theorem for Radon transforms - a new proof and a generalization, in Mathematical methods in tomography, Springer Lecture Notes in Math., vol. 1497, 1-5, 1991. | MR | Zbl

[2] J. Boman, A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, 315 (1992), 1231-1234. | MR | Zbl

[3] J. Boman, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms, Contemporary Mathematics, 140 (1992), 23-30. | MR | Zbl

[4] T. Carleman, Les fonctions quasianalytiques, Gauthier-Villars, Paris, 1926. | JFM

[5] E. Holmgren, Über Systeme von linearen partiellen Differentialgleichungen. Öfversigt af Kongl, Vetenskaps-Akad. Förh., 58 (1901), 91-103. | JFM

[6] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 671-704. | MR | Zbl

[7] L. Hörmander, The analysis of linear partial differential operators I, IV, Springer Verlag, 1983, 1985. | Zbl

[8] L. Hörmander, A uniqueness theorem for second order hyperbolic differential equations, Comm. Partial Diff. Equations, 17 (1992), 699-714. | MR | Zbl

[9] F. John, On linear differential equations with analytic coefficients. Unique continuation of data, Comm. Pure Appl. Math., 2 (1949), 209-253. | MR | Zbl

[10] A. Kaneko, Introduction to hyperfunctions, Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.

[11] T. Kawai, On the theory of Fourier hyperfunctions and its application to partial differential equations with constant coefficients, J. Fac. Sci. Tokyo, 17 (1970), 467-517. | MR | Zbl

[12] L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. Partial Diff. Equations, 16 (1991), 789-800. | MR | Zbl

[13] M. Sato, T. Kawai and M. Kashiwara, Hyperfunctions and pseudodifferential equations, in Springer Lecture Notes in Math., vol. 287 (1973), 265-529. | MR | Zbl

[14] R. Sigurdsson, Growth properties of analytic and plurisubharmonic functions of finite order, Math. Scand., 59 (1986), 235-304. | MR | Zbl

  • Ivanova, O. A.; Melikhov, S. N. Cyclic Vectors and Invariant Subspaces of the Backward Shift Operator in Schwartz Modules, Functional Analysis and Its Applications, Volume 56 (2022) no. 3, p. 188 | DOI:10.1134/s0016266322030030
  • Boman, Jan Regularity of a Distribution and of the Boundary of Its Support, The Journal of Geometric Analysis, Volume 32 (2022) no. 12 | DOI:10.1007/s12220-022-01021-y
  • Ivanova, Olga Aleksandrovna; Melikhov, Sergej Nikolaevich Циклические векторы и инвариантные подпространства оператора обратного сдвига в модулях Шварца, Функциональный анализ и его приложения, Volume 56 (2022) no. 3, p. 39 | DOI:10.4213/faa3982
  • Fürdös, Stefan; Nenning, David Nicolas; Rainer, Armin; Schindl, Gerhard Almost analytic extensions of ultradifferentiable functions with applications to microlocal analysis, Journal of Mathematical Analysis and Applications, Volume 481 (2020) no. 1, p. 123451 | DOI:10.1016/j.jmaa.2019.123451
  • Fürdös, Stefan Geometric microlocal analysis in Denjoy–Carleman classes, Pacific Journal of Mathematics, Volume 307 (2020) no. 2, p. 303 | DOI:10.2140/pjm.2020.307.303
  • Duan, Zhiwen; Han, Shuxia An inverse boundary problem for fourth-order Schrödinger equations with partial data, Mathematica Slovaca, Volume 69 (2019) no. 1, p. 125 | DOI:10.1515/ms-2017-0208
  • Chung, Julianne; Nguyen, Linh Motion Estimation and Correction in Photoacoustic Tomographic Reconstruction, SIAM Journal on Imaging Sciences, Volume 10 (2017) no. 1, p. 216 | DOI:10.1137/16m1082901
  • Hedenmalm, Haakan On the uniqueness theorem of Holmgren, Mathematische Zeitschrift, Volume 281 (2015) no. 1-2, p. 357 | DOI:10.1007/s00209-015-1488-6
  • Caro, Pedro; Dos Santos Ferreira, David; Ruiz, Alberto Stability estimates for the Radon transform with restricted data and applications, Advances in Mathematics, Volume 267 (2014), p. 523 | DOI:10.1016/j.aim.2014.08.009
  • Fischer, Yannick; Marteau, Benjamin; Privat, Yannick Some inverse problems around the tokamak Tore Supra, Communications on Pure and Applied Analysis, Volume 11 (2012) no. 6, p. 2327 | DOI:10.3934/cpaa.2012.11.2327
  • Boman, Jan Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Problems Imaging, Volume 4 (2010) no. 4, p. 619 | DOI:10.3934/ipi.2010.4.619
  • Ferreira, David Dos Santos; Kenig, Carlos E.; Sjöstrand, Johannes; Uhlmann, Gunther Determining a Magnetic Schrödinger Operator from Partial Cauchy Data, Communications in Mathematical Physics, Volume 271 (2007) no. 2, p. 467 | DOI:10.1007/s00220-006-0151-9
  • Katchalov, A.; Kurylev, Y.; Lassas, M. Energy Measurements and Equivalence of Boundary Data for Inverse Problems on Non-Compact Manifolds, Geometric Methods in Inverse Problems and PDE Control, Volume 137 (2004), p. 183 | DOI:10.1007/978-1-4684-9375-7_6
  • Hörmander, Lars; Sigurdsson, Ragnar Growth properties of plurisubharmonic functions related to Fourier-Laplace transforms, Journal of Geometric Analysis, Volume 8 (1998) no. 2, p. 251 | DOI:10.1007/bf02921643

Cité par 14 documents. Sources : Crossref