@article{AIF_1993__43_5_1223_0, author = {H\"ormander, Lars}, title = {Remarks on {Holmgren's} uniqueness theorem}, journal = {Annales de l'Institut Fourier}, pages = {1223--1251}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {5}, year = {1993}, doi = {10.5802/aif.1371}, mrnumber = {95b:35010}, zbl = {0804.35004}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1371/} }
TY - JOUR AU - Hörmander, Lars TI - Remarks on Holmgren's uniqueness theorem JO - Annales de l'Institut Fourier PY - 1993 SP - 1223 EP - 1251 VL - 43 IS - 5 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1371/ DO - 10.5802/aif.1371 LA - en ID - AIF_1993__43_5_1223_0 ER -
Hörmander, Lars. Remarks on Holmgren's uniqueness theorem. Annales de l'Institut Fourier, Tome 43 (1993) no. 5, pp. 1223-1251. doi : 10.5802/aif.1371. https://www.numdam.org/articles/10.5802/aif.1371/
[1] Helgason's support theorem for Radon transforms - a new proof and a generalization, in Mathematical methods in tomography, Springer Lecture Notes in Math., vol. 1497, 1-5, 1991. | MR | Zbl
,[2] A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, 315 (1992), 1231-1234. | MR | Zbl
,[3] Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms, Contemporary Mathematics, 140 (1992), 23-30. | MR | Zbl
,[4] Les fonctions quasianalytiques, Gauthier-Villars, Paris, 1926. | JFM
,[5] Über Systeme von linearen partiellen Differentialgleichungen. Öfversigt af Kongl, Vetenskaps-Akad. Förh., 58 (1901), 91-103. | JFM
,[6] Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 671-704. | MR | Zbl
,[7] The analysis of linear partial differential operators I, IV, Springer Verlag, 1983, 1985. | Zbl
,[8] A uniqueness theorem for second order hyperbolic differential equations, Comm. Partial Diff. Equations, 17 (1992), 699-714. | MR | Zbl
,[9] On linear differential equations with analytic coefficients. Unique continuation of data, Comm. Pure Appl. Math., 2 (1949), 209-253. | MR | Zbl
,[10] Introduction to hyperfunctions, Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.
,[11] On the theory of Fourier hyperfunctions and its application to partial differential equations with constant coefficients, J. Fac. Sci. Tokyo, 17 (1970), 467-517. | MR | Zbl
,[12] Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. Partial Diff. Equations, 16 (1991), 789-800. | MR | Zbl
,[13] Hyperfunctions and pseudodifferential equations, in Springer Lecture Notes in Math., vol. 287 (1973), 265-529. | MR | Zbl
, and ,[14] Growth properties of analytic and plurisubharmonic functions of finite order, Math. Scand., 59 (1986), 235-304. | MR | Zbl
,- Cyclic Vectors and Invariant Subspaces of the Backward Shift Operator in Schwartz Modules, Functional Analysis and Its Applications, Volume 56 (2022) no. 3, p. 188 | DOI:10.1134/s0016266322030030
- Regularity of a Distribution and of the Boundary of Its Support, The Journal of Geometric Analysis, Volume 32 (2022) no. 12 | DOI:10.1007/s12220-022-01021-y
- Циклические векторы и инвариантные подпространства оператора обратного сдвига в модулях Шварца, Функциональный анализ и его приложения, Volume 56 (2022) no. 3, p. 39 | DOI:10.4213/faa3982
- Almost analytic extensions of ultradifferentiable functions with applications to microlocal analysis, Journal of Mathematical Analysis and Applications, Volume 481 (2020) no. 1, p. 123451 | DOI:10.1016/j.jmaa.2019.123451
- Geometric microlocal analysis in Denjoy–Carleman classes, Pacific Journal of Mathematics, Volume 307 (2020) no. 2, p. 303 | DOI:10.2140/pjm.2020.307.303
- An inverse boundary problem for fourth-order Schrödinger equations with partial data, Mathematica Slovaca, Volume 69 (2019) no. 1, p. 125 | DOI:10.1515/ms-2017-0208
- Motion Estimation and Correction in Photoacoustic Tomographic Reconstruction, SIAM Journal on Imaging Sciences, Volume 10 (2017) no. 1, p. 216 | DOI:10.1137/16m1082901
- On the uniqueness theorem of Holmgren, Mathematische Zeitschrift, Volume 281 (2015) no. 1-2, p. 357 | DOI:10.1007/s00209-015-1488-6
- Stability estimates for the Radon transform with restricted data and applications, Advances in Mathematics, Volume 267 (2014), p. 523 | DOI:10.1016/j.aim.2014.08.009
- Some inverse problems around the tokamak Tore Supra, Communications on Pure and Applied Analysis, Volume 11 (2012) no. 6, p. 2327 | DOI:10.3934/cpaa.2012.11.2327
- Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform, Inverse Problems Imaging, Volume 4 (2010) no. 4, p. 619 | DOI:10.3934/ipi.2010.4.619
- Determining a Magnetic Schrödinger Operator from Partial Cauchy Data, Communications in Mathematical Physics, Volume 271 (2007) no. 2, p. 467 | DOI:10.1007/s00220-006-0151-9
- Energy Measurements and Equivalence of Boundary Data for Inverse Problems on Non-Compact Manifolds, Geometric Methods in Inverse Problems and PDE Control, Volume 137 (2004), p. 183 | DOI:10.1007/978-1-4684-9375-7_6
- Growth properties of plurisubharmonic functions related to Fourier-Laplace transforms, Journal of Geometric Analysis, Volume 8 (1998) no. 2, p. 251 | DOI:10.1007/bf02921643
Cité par 14 documents. Sources : Crossref