L’article est consacré aux objets locaux (germes de champs de vecteurs ou difféomorphismes) analytiques en toute dimension et spécialement à l’interaction entre les deux principales difficultés qui viennent compliquer leur étude: petits diviseurs et résonance. On introduit la technique d’arborification, qui permet d’étudier systématiquement l’influence des petits diviseurs diophantiens, puis on rappelle la définition des fonctions et monômes résurgents, indispensables dans tout contexte où intervient la résonance. On montre comment une unique équation, l’équation du pont, permet de construire tous les invariants holomorphes (i.e. tous les invariants analytiques fonction holomorphe de l’objet) et de donner une description très complète de ces objets locaux: normalisations sectorielles, critères d’existence de variétés analytiques invariantes, etc.
This paper is devoted to local analytic objects (i.e. germs of vector fields or diffeomorphisms) in any dimension, with special emphasis on the interplay between the two main difficulties: small denominators and resonance. We introduce an arborification technique, which is well suited for tackling diophantian small denominators and we recall the definition of resurgent functions and monomials, which are essential in any resonant context. We show how a single equation, the so-called Bridge Equation, not only yields all holomorphic invariants (i.e. all analytic invariants depending holomorphically on the object) but also most intrinsic properties of local objects, such as: sectorial normalization, criteria for the existence of invariant analytic varieties, etc.
@article{AIF_1992__42_1-2_73_0, author = {\'Ecalle, Jean}, title = {Singularit\'es non abordables par la g\'eom\'etrie}, journal = {Annales de l'Institut Fourier}, pages = {73--164}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {1-2}, year = {1992}, doi = {10.5802/aif.1287}, mrnumber = {93f:58214}, zbl = {0940.32013}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.1287/} }
TY - JOUR AU - Écalle, Jean TI - Singularités non abordables par la géométrie JO - Annales de l'Institut Fourier PY - 1992 SP - 73 EP - 164 VL - 42 IS - 1-2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1287/ DO - 10.5802/aif.1287 LA - fr ID - AIF_1992__42_1-2_73_0 ER -
Écalle, Jean. Singularités non abordables par la géométrie. Annales de l'Institut Fourier, …, Tome 42 (1992) no. 1-2, pp. 73-164. doi : 10.5802/aif.1287. https://www.numdam.org/articles/10.5802/aif.1287/
[Br] Analytic form of differential equations, Trans. Moscow. Math. Soc., Vol. 25 (1971). | Zbl
,[Be] Sur les fonctions limites quasianalytiques de fractions rationnelles, in Collected Works (Vol. 1, pp. 109-120), Boston, 1989.
,[E0] Théorie des invariants holomorphes, Thèse, Orsay, 1974.
,[E1] Les fonctions résurgentes, Vol. 1, Algèbres de fonctions résurgentes, Pub. Math. Orsay, (1981). | Zbl
,[E2] Les fonctions résurgentes, Vol. 2, Les fonctions résurgentes appliquées à l'itération, Pub. Math. Orsay, (1981). | Zbl
,[E3] Les fonctions résurgentes, Vol. 3, L'équation du pont et la classification analytique des objets locaux, Pub. Math. Orsay, (1985). | Zbl
,[E4] Classification analytique des champs de vecteurs locaux résonnants de Cv. Actes de la 37ème rencontre entre Mathématiciens et Physiciens (RCP), Strasbourg, Oct. 1983.
,[E5] Finitude des cycles-limites et accéléro-sommation de l'application de retour (pp. 74-159) in : Bifurcations of Planar Vector fields ; Proc. Luminy 1989, Lect. Notes 1455, Springer. | MR | Zbl
,[E6] Introduction aux fonctions analysables et application à la preuve constructive de la conjecture de Dulac, Hermann, Paris, 1991.
,[E7] Calcul accélératoire et applications (à paraître aux Actualités Math., Ed. Hermann, Paris).
,[E8] Calcul compensatoire et linéarisation quasianalytique des objets locaux. A paraître aux Proc. of the Coll. on complex Anal. Methods in Dyn. Syst., IMPA, Rio de Janeiro, Jan. 1992.
,[E10] The acceleration operators and their applications, Proc. of the 1990 I.C.M., (Kyoto), Springer Verlag. | Zbl
,[E11] Cohesive functions and weak accelerations. A paraître au Journal d'Analyse Math., Szolem Mandelbrojt Memorial Volume, 1992. | Zbl
,[MR1] Problèmes de modules pour des équations différentielles non-linéaires du premier ordre, Pub. Math. IHES, 55 (1982), 63-16. | Numdam | MR | Zbl
et ,[MR2] Classification analytique des équations différentielles non-linéaires résonnantes du premier ordre, Ann. Sc. Ec. Norm. Sup., 4ème série, t.16 (1983), 571-625. | Numdam | MR | Zbl
et ,[MR3] Elementary acceleration and multisummability, Paris, 1990. | Numdam | Zbl
et ,[Ma] Normalisation des champs de vecteurs holomorphes, d'après A.D. Brjuno, Séminaire Bourbaki, 1980-1981, n° 564-01. | Numdam | Zbl
,[Rü1] Über die Iteration analytischer Funktionen, J. Math. Mech., 17, 523-532. | Zbl
,[Rü2] On the convergence of power series transformations of analytic mappings near a fixed point into a normal form, Preprint IHES, Paris, 1977.
,- Resurgence and Mould Calculus, Encyclopedia of Mathematical Physics (2025), p. 24 | DOI:10.1016/b978-0-323-95703-8.00037-9
- Resurgent transseries, mould calculus and Connes-Kreimer Hopf algebra, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 99 (2023) no. 9 | DOI:10.3792/pjaa.99.013
- Resonance-based schemes for dispersive equations via decorated trees, Forum of Mathematics, Pi, Volume 10 (2022) | DOI:10.1017/fmp.2021.13
- Planarly branched rough paths and rough differential equations on homogeneous spaces, Journal of Differential Equations, Volume 269 (2020) no. 11, p. 9740 | DOI:10.1016/j.jde.2020.06.058
- Arborified Multiple Zeta Values, Periods in Quantum Field Theory and Arithmetic, Volume 314 (2020), p. 469 | DOI:10.1007/978-3-030-37031-2_18
- Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat, Journal of Differential Equations, Volume 266 (2019) no. 9, p. 5713 | DOI:10.1016/j.jde.2018.10.032
- A Review on Comodule-Bialgebras, Computation and Combinatorics in Dynamics, Stochastics and Control, Volume 13 (2018), p. 579 | DOI:10.1007/978-3-030-01593-0_20
- Renormalization: A Quasi-shuffle Approach, Computation and Combinatorics in Dynamics, Stochastics and Control, Volume 13 (2018), p. 599 | DOI:10.1007/978-3-030-01593-0_21
- A comodule-bialgebra structure for word-series substitution and mould composition, Journal of Algebra, Volume 489 (2017), p. 552 | DOI:10.1016/j.jalgebra.2017.07.002
- Combinatorics of Poincaré’s and Schröder’s equations, Resurgence, Physics and Numbers (2017), p. 329 | DOI:10.1007/978-88-7642-613-1_8
- Mould calculus – On the secondary symmetries, Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, p. 965 | DOI:10.1016/j.crma.2016.08.002
- The Splitting Process in Free Probability Theory, International Mathematics Research Notices, Volume 2016 (2016) no. 9, p. 2647 | DOI:10.1093/imrn/rnv209
- On Hurwitz multizeta functions, Advances in Applied Mathematics, Volume 71 (2015), p. 68 | DOI:10.1016/j.aam.2015.06.003
- The algebra of multitangent functions, Journal of Algebra, Volume 410 (2014), p. 148 | DOI:10.1016/j.jalgebra.2013.12.016
- Logarithmic derivatives and generalized Dynkin operators, Journal of Algebraic Combinatorics, Volume 38 (2013) no. 4, p. 901 | DOI:10.1007/s10801-013-0431-3
- Holomorphic Linearization of Commuting Germs of Holomorphic Maps, Journal of Geometric Analysis, Volume 23 (2013) no. 4, p. 1993 | DOI:10.1007/s12220-012-9316-2
- From dynamical systems to renormalization, Journal of Mathematical Physics, Volume 54 (2013) no. 9 | DOI:10.1063/1.4820375
- Nonlocal, noncommutative diagrammatics and the linked cluster theorems, Journal of Mathematical Chemistry, Volume 50 (2012) no. 3, p. 552 | DOI:10.1007/s10910-011-9828-1
- Resurgence, Stokes phenomenon and alien derivatives for level-one linear differential systems, Journal of Differential Equations, Volume 250 (2011) no. 3, p. 1591 | DOI:10.1016/j.jde.2010.09.018
- An Operational Calculus for the Mould Operad, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnn018
- Torus Actions in the Normalization Problem, Journal of Geometric Analysis, Volume 20 (2010) no. 2, p. 472 | DOI:10.1007/s12220-009-9108-5
- Calcul Moulien, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 18 (2009) no. 2, p. 307 | DOI:10.5802/afst.1208
- Dendriform equations, Journal of Algebra, Volume 322 (2009) no. 11, p. 4053 | DOI:10.1016/j.jalgebra.2009.06.002
- Progress in normal form theory, Nonlinearity, Volume 22 (2009) no. 7, p. R77 | DOI:10.1088/0951-7715/22/7/r01
- Normal form of holomorphic dynamical systems, Hamiltonian Dynamical Systems and Applications (2008), p. 249 | DOI:10.1007/978-1-4020-6964-2_12
- On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition, Advances in Mathematics, Volume 216 (2007) no. 1, p. 1 | DOI:10.1016/j.aim.2007.04.017
- The Birkhoff decomposition in groups of formal diffeomorphisms, Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, p. 737 | DOI:10.1016/j.crma.2006.02.035
- Recent advances in the analysis of divergence and singularities, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations (2004), p. 87 | DOI:10.1007/978-94-007-1025-2_3
- Formes normales et problème du centre, Bulletin des Sciences Mathématiques, Volume 125 (2001) no. 3, p. 235 | DOI:10.1016/s0007-4497(00)01070-8
- Singular complete integrability, Publications mathématiques de l'IHÉS, Volume 91 (2000) no. 1, p. 133 | DOI:10.1007/bf02698742
- Structure of normal form series for non-analytical vector fields and generalized resonances, Journal of Physics A: Mathematical and General, Volume 32 (1999) no. 21, p. 3959 | DOI:10.1088/0305-4470/32/21/309
- Non-perturbative linearization of dynamical systems, Journal of Physics A: Mathematical and General, Volume 29 (1996) no. 16, p. 5035 | DOI:10.1088/0305-4470/29/16/024
- Symmetry invariance and centre manifolds for dynamical systems, Il Nuovo Cimento B Series 11, Volume 109 (1994) no. 1, p. 59 | DOI:10.1007/bf02723730
- Six Lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac’s Conjecture, Bifurcations and Periodic Orbits of Vector Fields (1993), p. 75 | DOI:10.1007/978-94-015-8238-4_3
Cité par 34 documents. Sources : Crossref