Soit
Let
@article{AIF_1991__41_2_467_0, author = {Kuhn, M. Gabriella}, title = {Random walks on free products}, journal = {Annales de l'Institut Fourier}, pages = {467--491}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {2}, year = {1991}, doi = {10.5802/aif.1261}, mrnumber = {93a:43008}, zbl = {0725.60009}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1261/} }
Kuhn, M. Gabriella. Random walks on free products. Annales de l'Institut Fourier, Tome 41 (1991) no. 2, pp. 467-491. doi : 10.5802/aif.1261. https://www.numdam.org/articles/10.5802/aif.1261/
[A] Spectral theory on a free group and algebraic curves, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 31 (1984), 297-317. | MR | Zbl
,[AK] Green functions and spectra on free products of cyclic groups, Annales Inst. Fourier, 38-1 (1988), 59-85. | Numdam | MR | Zbl
, ,[CF-T] Projections of uniqueness for Lp(G), Pacific J. of Math., 51 (1974), 34-37. | MR | Zbl
, ,[CS1] Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal., 65 (1986), 147-171. | MR | Zbl
, ,[CS2] Random walks on free products, quotient and amalgams, Nagoya Math. J., 102 (1986), 163-180. | MR | Zbl
, ,[CT] Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal., 59 (1984), 175-184. | MR | Zbl
, ,[DM] Random walk on groups with a finite number of generators, Sov. Math. Dokl., 2 (1961), 399-402. | Zbl
, ,[DS] Linear Operators, Interscience, New York, 1963.
, ,[F-TS] Harmonic analysis for anisotropic random walks on homogeneous trees, to appear in Memoirs A.M.S. | Zbl
, ,[IP] Spherical functions on symmetrical graphs, Harmonic Analysis, Proceedings Cortona, Italy, Springer Lecture Notes in Math.
, ,[K] Anisotropic random walks on the free product of cyclic groups, irreducible representations and indempotents of C*reg(G), preprint. | Zbl
,[K-S] Restrictions of the special representation of Aut(Trees) to two cocompact subgroups, to appear in Rocky Moutain J. | Zbl
, ,[M-L] Random walks and convolution operators on free products, Doctoral Dissertation, New York University.
,[S] Harmonic analysis for anisotropic random walks on homogeneous trees, Doctoral Dissertation, Washington University, St. Louis. | Zbl
,[T1] Maximal abelian subalgebras of function algebras associated with free products, J. Funct. Anal., 79 (1988), 342-350. | MR | Zbl
,[T2] A Green's function for non-homogeneous random walks on free products, Math. Z., 199 (1989), 425-441. | MR | Zbl
,[W1] Nearest neighbour random walks on free products of discrete groups, Boll. U.M.I., 65 B (1986), 961-982. | MR | Zbl
,[W2] Context-free language and random walks on groups, Discrete Math., 64 (1987), 81-87. | MR | Zbl
,- Green’s functions of free products of operators, with applications to graph spectra and to random walks, Nagoya Mathematical Journal, Volume 149 (1998), p. 93 | DOI:10.1017/s0027763000006577
Cité par 1 document. Sources : Crossref