Random walks on free products
Annales de l'Institut Fourier, Tome 41 (1991) no. 2, pp. 467-491.

Soit G=*j=1q+1Gnj+1 le produit libre de q+1 groupes finis d’ordre nj+1, et μ la probabilité prenant la valeur pj/nj sur chaque élément de Gnj+1{e}. Nous décrivons ici le spectre ponctuel de μ sur Creg*(G). On montre en particulier que ce spectre ponctuel apparaît pour certains choix des nombres nj, et les espaces propres correspondants dans l2 sont décrits. Enfin, on obtient une décomposition de la représentation régulière de G à l’aide de la fonction de Green de μ, cette décomposition étant irréductible si, et seulement si, μ n’a pas de sous-espace propre.

Let G=*j=1q+1Gnj+1 be the product of q+1 finite groups each having order nj+1 and let μ be the probability measure which takes the value pj/nj on each element of Gnj+1{e}. In this paper we shall describe the point spectrum of μ in Creg*(G) and the corresponding eigenspaces. In particular we shall see that the point spectrum occurs only for suitable choices of the numbers nj. We also compute the continuous spectrum of μ in Creg*(G) in several cases. A family of irreducible representations of G, parametrized on the continuous spectrum of μ, is here presented. Finally, we shall get a decomposition of the regular representation of G by means of the Green function of μ and the decomposition is into irreducibles if and only if there are no true eigenspaces for μ.

@article{AIF_1991__41_2_467_0,
     author = {Kuhn, M. Gabriella},
     title = {Random walks on free products},
     journal = {Annales de l'Institut Fourier},
     pages = {467--491},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {41},
     number = {2},
     year = {1991},
     doi = {10.5802/aif.1261},
     mrnumber = {93a:43008},
     zbl = {0725.60009},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1261/}
}
TY  - JOUR
AU  - Kuhn, M. Gabriella
TI  - Random walks on free products
JO  - Annales de l'Institut Fourier
PY  - 1991
SP  - 467
EP  - 491
VL  - 41
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1261/
DO  - 10.5802/aif.1261
LA  - en
ID  - AIF_1991__41_2_467_0
ER  - 
%0 Journal Article
%A Kuhn, M. Gabriella
%T Random walks on free products
%J Annales de l'Institut Fourier
%D 1991
%P 467-491
%V 41
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1261/
%R 10.5802/aif.1261
%G en
%F AIF_1991__41_2_467_0
Kuhn, M. Gabriella. Random walks on free products. Annales de l'Institut Fourier, Tome 41 (1991) no. 2, pp. 467-491. doi : 10.5802/aif.1261. https://www.numdam.org/articles/10.5802/aif.1261/

[A] K. Aomoto, Spectral theory on a free group and algebraic curves, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 31 (1984), 297-317. | MR | Zbl

[AK] K. Aomoto, Y. Kato, Green functions and spectra on free products of cyclic groups, Annales Inst. Fourier, 38-1 (1988), 59-85. | Numdam | MR | Zbl

[CF-T] C. Cecchini, A. Figá-Talamanca, Projections of uniqueness for Lp(G), Pacific J. of Math., 51 (1974), 34-37. | MR | Zbl

[CS1] D. I. Cartwright, P. M. Soardi, Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal., 65 (1986), 147-171. | MR | Zbl

[CS2] D. I. Cartwright, P. M. Soardi, Random walks on free products, quotient and amalgams, Nagoya Math. J., 102 (1986), 163-180. | MR | Zbl

[CT] J. M. Cohen, A. R. Trenholme, Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal., 59 (1984), 175-184. | MR | Zbl

[DM] E. D. Dynkin, M. B. Malyutov, Random walk on groups with a finite number of generators, Sov. Math. Dokl., 2 (1961), 399-402. | Zbl

[DS] N. Dunford, J. T. Schwartz, Linear Operators, Interscience, New York, 1963.

[F-TS] A. Figá-Talamanca, T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, to appear in Memoirs A.M.S. | Zbl

[IP] A. Iozzi, M. Picardello, Spherical functions on symmetrical graphs, Harmonic Analysis, Proceedings Cortona, Italy, Springer Lecture Notes in Math.

[K] G. Kuhn, Anisotropic random walks on the free product of cyclic groups, irreducible representations and indempotents of C*reg(G), preprint. | Zbl

[K-S] G. Kuhn, T. Steger, Restrictions of the special representation of Aut(Trees) to two cocompact subgroups, to appear in Rocky Moutain J. | Zbl

[M-L] Mclaughlin, Random walks and convolution operators on free products, Doctoral Dissertation, New York University.

[S] T. Steger, Harmonic analysis for anisotropic random walks on homogeneous trees, Doctoral Dissertation, Washington University, St. Louis. | Zbl

[T1] A. R. Trenholme, Maximal abelian subalgebras of function algebras associated with free products, J. Funct. Anal., 79 (1988), 342-350. | MR | Zbl

[T2] A. R. Trenholme, A Green's function for non-homogeneous random walks on free products, Math. Z., 199 (1989), 425-441. | MR | Zbl

[W1] W. Woess, Nearest neighbour random walks on free products of discrete groups, Boll. U.M.I., 65 B (1986), 961-982. | MR | Zbl

[W2] W. Woess, Context-free language and random walks on groups, Discrete Math., 64 (1987), 81-87. | MR | Zbl

  • Gutkin, Eugene Green’s functions of free products of operators, with applications to graph spectra and to random walks, Nagoya Mathematical Journal, Volume 149 (1998), p. 93 | DOI:10.1017/s0027763000006577

Cité par 1 document. Sources : Crossref