Bahouri a montré récemment qu’il n’y a généralement pas de résultat de prolongement à partir d’un ouvert, pour les solutions de
A recent result of Bahouri shows that continuation from an open set fails in general for solutions of
@article{AIF_1990__40_2_313_0, author = {Garofalo, Nicola and Lanconelli, Ermanno}, title = {Frequency functions on the {Heisenberg} group, the uncertainty principle and unique continuation}, journal = {Annales de l'Institut Fourier}, pages = {313--356}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {2}, year = {1990}, doi = {10.5802/aif.1215}, mrnumber = {91i:22014}, zbl = {0694.22003}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1215/} }
TY - JOUR AU - Garofalo, Nicola AU - Lanconelli, Ermanno TI - Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation JO - Annales de l'Institut Fourier PY - 1990 SP - 313 EP - 356 VL - 40 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1215/ DO - 10.5802/aif.1215 LA - en ID - AIF_1990__40_2_313_0 ER -
%0 Journal Article %A Garofalo, Nicola %A Lanconelli, Ermanno %T Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation %J Annales de l'Institut Fourier %D 1990 %P 313-356 %V 40 %N 2 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1215/ %R 10.5802/aif.1215 %G en %F AIF_1990__40_2_313_0
Garofalo, Nicola; Lanconelli, Ermanno. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Annales de l'Institut Fourier, Tome 40 (1990) no. 2, pp. 313-356. doi : 10.5802/aif.1215. https://www.numdam.org/articles/10.5802/aif.1215/
[A] Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents, in Minimal Submanifolds and Geodesics (M. Obata, Ed.), North-Holland, Amsterdam, 1979, pp. 1-6. | MR | Zbl
, ,[Ba] Non prolongement unique des solutions d'opérateurs "Somme de Carrés", Ann. Inst. Fourier, Grenoble, 36-4 (1986), 137-155. | Numdam | MR | Zbl
,[B] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, Grenoble, 19-1 (1969), 277-304. | Numdam | MR | Zbl
,[Fe] Geometric measure theory (Die Grundlehren der mathematischen Wissenschaften, vol. 153), Berlin-Heidelberg-New York, Springer, 1969. | Zbl
,[F1] A fundamental solution for a subelliptic operator, Bull. of the Amer. Math. Soc., 79 (2) (1973), 373-376. | MR | Zbl
,[F2] Harmonic analysis in phase space, Annals of Math. Studies, Princeton Univ. Press, Princeton, N.J., 1989. | MR | Zbl
,[F3] Applications of analysis on nilpotent groups to partial differential equations, Bull. Amer. Math. Soc., 83 (1977), 912-930. | MR | Zbl
,[FS] Hardy spaces on homogeneous groups, Mathematical Notes, Princeton Univ. Press, 1982. | MR | Zbl
and ,[GL1] Monotonicity properties of variational integrals, Ap weights and unique continuation, Indiana Univ. Math. J., 35 (2) (1986), 245-268. | MR | Zbl
and ,[GL2] Unique continuation for elliptic operators : A geometric-variational approach, Comm. in Pure and Appl. Math. XL (1987), 347-366. | MR | Zbl
and ,[G] Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groups nilpotents, Acta Math., 139 (1977), 95-153. | MR | Zbl
,[Gr] Spherical harmonics on the Heisenberg group, Canad. Math. Bull., 23 (4) (1980), 383-396. | MR | Zbl
,[GrK] Variations on the Heisenberg spherical harmonics, preprint, Mathematical Centrum, Amsterdam, 1983.
and ,[He] The physical principles of the quantum theory, Dover, 1949.
,[Her] Lie Groups for Physicists, W. A. Benjamin, N. Y., 1966. | MR | Zbl
,[H1] Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl
,[H2] Uniqueness theorems for second-order elliptic differential equations, Comm. in PDE, 8 (1983), 21-64. | MR | Zbl
,[Ho] On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc., 3 (1980), 821-843. | MR | Zbl
,[KSWW] On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in "Spectral theory and differential equations" (W. N. Everitt, Ed.), Lecture Notes in Math. 448, Springer-Verlag, 1975. | Zbl
, , and ,[S] Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, Actes, Congrès Intern. Math., Nice, 1 (1970), 179-189. | Zbl
,Cité par Sources :