R. Fefferman a montré que sur un espace-produit à deux facteurs un opérateur
R. Fefferman has shown that, on a product-space with two factors, an operator T bounded on
@article{AIF_1988__38_1_111_0, author = {Journ\'e, Jean-Lin}, title = {Two problems of {Calder\'on-Zygmund} theory on product-spaces}, journal = {Annales de l'Institut Fourier}, pages = {111--132}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {1}, year = {1988}, doi = {10.5802/aif.1125}, mrnumber = {90b:42031}, zbl = {0638.47026}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1125/} }
TY - JOUR AU - Journé, Jean-Lin TI - Two problems of Calderón-Zygmund theory on product-spaces JO - Annales de l'Institut Fourier PY - 1988 SP - 111 EP - 132 VL - 38 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1125/ DO - 10.5802/aif.1125 LA - en ID - AIF_1988__38_1_111_0 ER -
Journé, Jean-Lin. Two problems of Calderón-Zygmund theory on product-spaces. Annales de l'Institut Fourier, Tome 38 (1988) no. 1, pp. 111-132. doi : 10.5802/aif.1125. https://www.numdam.org/articles/10.5802/aif.1125/
[1] Calderón-Zygmund theory for product domains-Hp spaces, P.N.S.A., vol. 83 (1986), 840-843. | MR | Zbl
,[2] Journé's covering lemma and its extension to higher dimensions, Duke Journal of Math, 53 n° 3 (1986), 683-690. | MR | Zbl
,[3] Calderón-Zygmund operators on product spaces, Mat. Iberoamerica, vol. 1, n° 3 (1985), 55-91. | MR | Zbl
,[4] Harmonic analysis on product spaces, Ann. of Math., (2), vol. 126 (1987), 109-130. | MR | Zbl
,[5] Functions of bounded mean oscillation on the polydisc, Ann. of Math., (2), 10 (1979), 395-406. | MR | Zbl
,[6] A counterexample for measures bounded for Hp for the bi-disc, Mittag Leffer Report n° 7, 1974.
,[7] A continuous version of the duality of H1 and BMO on the bi-disc, Ann. of Math., (2), 112 (1980), 179-201. | MR | Zbl
and ,[8] A Littlewood-Paley inequality for arbitrary intervals, Revista Mat. Iberoamericana, vol. 1, n° 2 (1985). | MR | Zbl
,[9] Ph. D. dissertation, Yale University, 1982.
,[10] Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159 (1987), 51-80. | MR | Zbl
, and ,[11] Carleson measure on the bi-disc, Ann. of Math., (2), 109 (1979), 613-620. | MR | Zbl
,[12] Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, L.N. 994, Springer-Verlag. | MR | Zbl
,[13] The Calderón-Zygmund decomposition on product domains, Am. J. of Math., vol. 104, 3, 455-468. | MR | Zbl
and ,Cité par Sources :