Nous donnons une condition, le type
Nous définissons une condition, le type
A condition, of type
A condition, of type
@article{AIF_1987__37_2_223_0, author = {Domergue, Michel and Short, H.}, title = {Surfaces incompressibles dans les vari\'et\'es obtenues par chirurgie longitudinale le long d{\textquoteright}un noeud de $S^3$}, journal = {Annales de l'Institut Fourier}, pages = {223--238}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, number = {2}, year = {1987}, doi = {10.5802/aif.1093}, mrnumber = {88m:57005}, zbl = {0607.57010}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.1093/} }
TY - JOUR AU - Domergue, Michel AU - Short, H. TI - Surfaces incompressibles dans les variétés obtenues par chirurgie longitudinale le long d’un noeud de $S^3$ JO - Annales de l'Institut Fourier PY - 1987 SP - 223 EP - 238 VL - 37 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1093/ DO - 10.5802/aif.1093 LA - fr ID - AIF_1987__37_2_223_0 ER -
%0 Journal Article %A Domergue, Michel %A Short, H. %T Surfaces incompressibles dans les variétés obtenues par chirurgie longitudinale le long d’un noeud de $S^3$ %J Annales de l'Institut Fourier %D 1987 %P 223-238 %V 37 %N 2 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1093/ %R 10.5802/aif.1093 %G fr %F AIF_1987__37_2_223_0
Domergue, Michel; Short, H. Surfaces incompressibles dans les variétés obtenues par chirurgie longitudinale le long d’un noeud de $S^3$. Annales de l'Institut Fourier, Tome 37 (1987) no. 2, pp. 223-238. doi : 10.5802/aif.1093. https://www.numdam.org/articles/10.5802/aif.1093/
[1] Manifolds with multiple knot-surgery descriptions, Math. Proc. Camb. Phil. Soc., 87, n° 3 (1980), 443-448. | MR | Zbl
,[2] Genus of alternating link types, Ann. of Math., Vol. 69, n° 2 (1959), 258-275. | MR | Zbl
,[3] Incompressible surfaces and surgery on knots, preprint.
and ,[4] Surfaces incompressibles dans les variétés obtenues par chirurgie longitudinale sur un n° de S3, C.R.A.S., Tome 300. Série I, n° 19 (1985), 669-672. | MR | Zbl
et ,[5] Dehn surgery and satellite knots, Trans. AMS, 275, n° 2 (1983), 687-708. | MR | Zbl
,[6] 3-manifolds, Annals of Math Studies, n° 86, Princeton Univ. Press, Princeton NJ. | MR | Zbl
,[7] Lectures on Three-Manifold Topology, CBMS Regional Conferences Series, (43) Amer. Math. Soc., (1980). | MR | Zbl
,[8] Adding a 2-handle to a 3-manifold, Proc. A.M.S., 92 (1984), 288-292. | MR | Zbl
,[9] On irreducibility of 3-manifolds, preprint.
,[10] Problems in low dimensional manifold theory, Proc. Symposia in Pure Math., vol. 32 (1978). | MR | Zbl
,[11] Simple knots without unique minimal surfaces, Proc. A.M.S., 43 (1974), 449-453. | MR | Zbl
,[12] Closed incompressible surfaces in alternating knot and link complements, Topology, 23 (1984), 37-44. | MR | Zbl
,[13] On the impossibility of obtaining S2 × S1 by elementary surgery along a knot, Pacific J. of Math., 53 (1974), 519-523. | MR | Zbl
,[14] Knot groups, Annals of Math. Studies, n° 56 Princeton University Press (1953).
,[15] Closed incompressible surfaces in complements of star links, Pacific Journal of Mathematics. | Zbl
,[16] On Dehn's Lemma and the asphericity of knots, Ann. of Math., 66 (1957), 1-26. | MR | Zbl
,[17] Incompressibility of surfaces after Dehn surgery, Michigan Math. J., 30 (1983), 289-307. | MR | Zbl
,[18] Knots and Links, Maths. Lecture Series, Publish or Perish. | Zbl
,[19] Some closed incompressible surfaces... in " Low dimensional topology ", Lecture Note Séries, n° 95, London Math. Soc., p. 179-194. Edited by Roger Fenn. | Zbl
,Références complémentaires :
[20] Foliations and the topology of 3-manifolds, J. Diff. Geom., 18 (1983), 445-503. | MR | Zbl
,[21] Foliations and the topology of 3-manifolds (II) et (III), MSRI preprint, n° 08912-85. | Zbl
,[22] Dehn surgery on knots, preprint.. | Zbl
, , and ,[23] Sutured manifolds and generalized Thurstan norms, preprint, décembre 1985.
,Cité par Sources :