Fondée sur une méthode de H. W. Lenstra Jr., cette note représente 143 exemples nouveaux des corps de nombres euclidiens. Il s’agit des corps de degré
Based on a method of H. W. Lenstra Jr. in this note 143 new Euclidean number fields are given of degree
@article{AIF_1985__35_2_83_0, author = {Leutbecher, Armin}, title = {Euclidean fields having a large {Lenstra} constant}, journal = {Annales de l'Institut Fourier}, pages = {83--106}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {2}, year = {1985}, doi = {10.5802/aif.1011}, mrnumber = {86j:11107}, zbl = {0546.12005}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1011/} }
TY - JOUR AU - Leutbecher, Armin TI - Euclidean fields having a large Lenstra constant JO - Annales de l'Institut Fourier PY - 1985 SP - 83 EP - 106 VL - 35 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1011/ DO - 10.5802/aif.1011 LA - en ID - AIF_1985__35_2_83_0 ER -
Leutbecher, Armin. Euclidean fields having a large Lenstra constant. Annales de l'Institut Fourier, Tome 35 (1985) no. 2, pp. 83-106. doi : 10.5802/aif.1011. https://www.numdam.org/articles/10.5802/aif.1011/
[1] Valeurs minima du discriminant des corps de degré 7 ayant une seule place réelle, C.R.A.S., Paris, 296 (1983), 137-139. | MR | Zbl
,[2] Valeurs minima du discriminant pour certains types de corps de degré 7, Ann. de l'Inst. Fourier, 34-3 (1984), 29-38. | Numdam | MR | Zbl
,[3] Integral points on curves, Publ. IHES, (1960), N° 6. | Numdam | MR | Zbl
,[4] Euclidean number fields of large degree, Invent. Math., 38 (1977), 237-254. | MR | Zbl
.,[5] Euclidean number fields, Math. Intelligencer 2, no. 1 (1979), 6-15 ; no. 2 (1980), 73-77, 99-103. | MR | Zbl
.,[6] Lenstra's constant and Euclidean number fields, Astérisque, 94 (1982), 87-131. | Numdam | MR | Zbl
and ,[7] Euclidean rings with two infinite primes, Thesis, Amsterdam, (1984). | Zbl
,[8] Petits discriminants des corps de nombre, J. V. Armitage (éd.), Journées Arithmétiques 1980, Cambridge University Press. LMS Lecture Notes séries, 56 (1982), 151-193. | MR | Zbl
,[9] Sur un type particulier d'unités algébriques, Ark. Mat., 8 (1969), 163-184. | MR | Zbl
,[10] On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. of Number Th., 14 (1982), 99-117. | MR | Zbl
,- HT90 and “simplest” number fields, Illinois Journal of Mathematics, Volume 55 (2011) no. 4 | DOI:10.1215/ijm/1373636699
- Polynomial-mappings and M-equivalence, Journal of Algebra, Volume 302 (2006) no. 2, p. 862 | DOI:10.1016/j.jalgebra.2006.04.027
- Appendix C: Tables, Advanced Topics in Computional Number Theory, Volume 193 (2000), p. 533 | DOI:10.1007/978-1-4419-8489-0_12
- Non-primitive number fields of degree eight and of signature (2,3), (4,2), and (6,1) with small discriminant, Mathematics of Computation, Volume 68 (1999) no. 225, p. 333 | DOI:10.1090/s0025-5718-99-00998-9
- Computing ray class groups, conductors and discriminants, Mathematics of Computation, Volume 67 (1998) no. 222, p. 773 | DOI:10.1090/s0025-5718-98-00912-0
- Computing ray class groups, conductors and discriminants, Algorithmic Number Theory, Volume 1122 (1996), p. 49 | DOI:10.1007/3-540-61581-4_40
- Verallgemeinerte Euklidische Algorithmen, Archiv der Mathematik, Volume 64 (1995) no. 4, p. 313 | DOI:10.1007/bf01198085
- Imprimitive ninth-degree number fields with small discriminants, Mathematics of Computation, Volume 64 (1995) no. 209, p. 305 | DOI:10.1090/s0025-5718-1995-1260128-x
- Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group, SIAM Journal on Discrete Mathematics, Volume 7 (1994) no. 4, p. 667 | DOI:10.1137/s0895480192224713
- The computation of sextic fields with a quadratic subfield, Mathematics of Computation, Volume 54 (1990) no. 190, p. 869 | DOI:10.1090/s0025-5718-1990-1011438-8
- On cliques of exceptional units and Lenstra's construction of Euclidean fields, Number Theory, Volume 1380 (1989), p. 150 | DOI:10.1007/bfb0086551
Cité par 11 documents. Sources : Crossref