Weak-star continuous homomorphisms and a decomposition of orthogonal measures
Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 149-189.

Nous considérons l’ensemble S(μ) des homomorphismes à valeurs complexes d’une algèbre uniforme A qui sont faiblement continus par rapport à une mesure prédéterminée μ. Nous définissons les μ-parties de S(μ) et nous obtenons un théorème de décomposition pour les mesures dans AL1(μ) tel que les éléments de la somme soient mutuellement absolument continus par rapport aux mesures représentatives. L’ensemble S(μ) est étudié pour les algèbres T-invariantes définies sur les sous-ensembles compacts du plan complexe ou encore pour l’algèbre du polydisque infini.

We consider the set S(μ) of complex-valued homomorphisms of a uniform algebra A which are weak-star continuous with respect to a fixed measure μ. The μ-parts of S(μ) are defined, and a decomposition theorem for measures in AL1(μ) is obtained, in which constituent summands are mutually absolutely continuous with respect to representing measures. The set S(μ) is studied for T-invariant algebras on compact subsets of the complex plane and also for the infinite polydisc algebra.

@article{AIF_1985__35_1_149_0,
     author = {Cole, B. J. and Gamelin, Theodore W.},
     title = {Weak-star continuous homomorphisms and a decomposition of orthogonal measures},
     journal = {Annales de l'Institut Fourier},
     pages = {149--189},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {35},
     number = {1},
     year = {1985},
     doi = {10.5802/aif.1004},
     mrnumber = {86m:46051},
     zbl = {0546.46042},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1004/}
}
TY  - JOUR
AU  - Cole, B. J.
AU  - Gamelin, Theodore W.
TI  - Weak-star continuous homomorphisms and a decomposition of orthogonal measures
JO  - Annales de l'Institut Fourier
PY  - 1985
SP  - 149
EP  - 189
VL  - 35
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1004/
DO  - 10.5802/aif.1004
LA  - en
ID  - AIF_1985__35_1_149_0
ER  - 
%0 Journal Article
%A Cole, B. J.
%A Gamelin, Theodore W.
%T Weak-star continuous homomorphisms and a decomposition of orthogonal measures
%J Annales de l'Institut Fourier
%D 1985
%P 149-189
%V 35
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1004/
%R 10.5802/aif.1004
%G en
%F AIF_1985__35_1_149_0
Cole, B. J.; Gamelin, Theodore W. Weak-star continuous homomorphisms and a decomposition of orthogonal measures. Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 149-189. doi : 10.5802/aif.1004. https://www.numdam.org/articles/10.5802/aif.1004/

[1]W. Arveson, An Invitation to C* Algebras, Springer-Verlag, 1976. | MR | Zbl

[2]K. Barbey and H. König, Abstract analytic function theory and Hardy algebras, Lecture Notes in Math., vol. 593, Springer-Verlag, 1977. | MR | Zbl

[3]A. Browder, Introduction to Function Algebras, Benjamin, 1969. | MR | Zbl

[4]J. Chaumat, Adhérence faible étoile d'algèbres de fractions rationnelles, Ann. Inst. Fourier, Grenoble, 24,4 (1974), 93-120. | Numdam | MR | Zbl

[5]B.J. Cole and T.W. Gamelin, Tight uniform algebras, Journal of Functional Analysis, 46 (1982), 158-220. | MR | Zbl

[6]J.B. Conway, Subnormal operators, Research Notes in Mathematics # 51, Pitman, 1981. | MR | Zbl

[7]J. Dudziak, Spectral mapping theorems for subnormal operators, J. Funct. Anal., 56 (1984), 360-387. | MR | Zbl

[8]T.W. Gamelin, Uniform Algebras, Prentice-Hall, 1969. | MR | Zbl

[9]T.W. Gamelin, Rational Approximation Theory, course lecture notes, UCLA, 1975.

[10]T.W. Gamelin, Uniform algebras on plane sets, in Approximation Theory, Academic Press, 1973, pp. 100-149. | MR | Zbl

[11]T.W. Gamelin and J. Garnett, Bounded approximation by rational functions, Pac. J. Math., 45 (1973), 129-150. | MR | Zbl

[12]I. Glicksberg, Recent results on function algebras, CBMS Regional Conference Series in Mathematics, vol. 11, Am. Math. Society, 1972. | MR | Zbl

[13]I. Glicksberg, Equivalence of certain representing measures, Proc. A.M.S., 82 (1981), 374-376. | MR | Zbl

[14]K. Hoffman and H. Rossi, Extension of positive weak*-continuous functionals, Duke Math. J., 34 (1967), 453-466. | MR | Zbl

[15]H. Konig and G.L. Seever, The abstract F. and M Riesz theorem, Duke Math. J., 36 (1969), 791-797. | MR | Zbl

[16]T. Lyons, Finely holomorphic functions, J. Funct. Anal., 37 (1980), 1-18. | MR | Zbl

[17]D.E. Sarason, Weak-star density of polynomials, J. Reine Angew Math., 252 (1972), 1-15. | MR | Zbl

  • Gamelin, T. W. Weak-star closed algebras containingR (K), Archiv der Mathematik, Volume 52 (1989) no. 1, p. 75 | DOI:10.1007/bf01197975
  • Gamelin, T.W; Russo, P; Thomson, J.E A Stone-Weierstrass theorem for weak-star approximation by rational functions, Journal of Functional Analysis, Volume 87 (1989) no. 1, p. 170 | DOI:10.1016/0022-1236(89)90006-2

Cité par 2 documents. Sources : Crossref