Nous étudions les feuilletages riemanniens sur les variétés simplement connexes d’un point de vue qualitatif. Nous montrons tout d’abord que ces feuilletages peuvent être approchés par des fibrations de Seifert généralisées. Nous montrons ensuite que, pour une certaine métrique quasi-fibrée, les feuilles de ces feuilletages sont des sous-variétés minimales. Comme application, nous montrons que les seuls feuilletages riemanniens qui ne sont pas des fibrés de seifert, sur les sphères et les espace projectifs, sont de dimension 1.
Riemannian foliations on simply connected manifolds are studied from a qualitative point of view. We show that these foliations can be approximated by generalized Seifert fibrations. Then, we show that, for some bundle-like metric, the leaves of such foliations are minimal submanifolds. As an application, we show that the only riemannian foliations which are not Seifert fibrations, on spheres and projective spaces, are 1 dimensional.
@article{AIF_1984__34_4_203_0, author = {Ghys, \'Etienne}, title = {Feuilletages riemanniens sur les vari\'et\'es simplement connexes}, journal = {Annales de l'Institut Fourier}, pages = {203--223}, publisher = {Imprimerie Durand}, address = {Chartres}, volume = {34}, number = {4}, year = {1984}, doi = {10.5802/aif.994}, mrnumber = {86c:57025}, zbl = {0525.57024}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.994/} }
TY - JOUR AU - Ghys, Étienne TI - Feuilletages riemanniens sur les variétés simplement connexes JO - Annales de l'Institut Fourier PY - 1984 SP - 203 EP - 223 VL - 34 IS - 4 PB - Imprimerie Durand PP - Chartres UR - https://www.numdam.org/articles/10.5802/aif.994/ DO - 10.5802/aif.994 LA - fr ID - AIF_1984__34_4_203_0 ER -
Ghys, Étienne. Feuilletages riemanniens sur les variétés simplement connexes. Annales de l'Institut Fourier, Tome 34 (1984) no. 4, pp. 203-223. doi : 10.5802/aif.994. https://www.numdam.org/articles/10.5802/aif.994/
[1] Seminar on transformation groups, Annals of Mathematical Studies, 46 (1960), Princeton University Press. | Zbl
,[2] Impossibilité de fibrer une sphère par un produit de sphères, C.R.A.S., Paris, 231 (1950), 943-45. | MR | Zbl
,[3] Flots riemanniens, à paraître dans Astérisque (Journées sur les structures transverses, Toulouse, 1982). | Numdam | Zbl
,[4] Sur la cohomologie feuilletée, Compositio Mathematica, 49 (1983), 195-215. | Numdam | MR | Zbl
,[5] Feuilletages du plan, feuilletages de Lie, Thèse Université Louis Pasteur, Strasbourg, 1973, Lecture Notes in Math., 652, pp. 183-195. | MR | Zbl
,[6] Some remarks on foliations with minimal leaves, J. of Differential Geometry, 15 (1980), 269-284. | MR | Zbl
,[7] Groupoïdes d'holonomie et classifiants, à paraître dans Astérisque (Journées sur les structures transverses, Toulouse, 1982). | Numdam | Zbl
,[8] Feuilletages sans holonomie d'une variété fermée, C.R.A.S., Paris, 270 (1970), 507-509. | MR | Zbl
et ,[9] Sur la généralisation d'un théorème de Tischler à certains feuilletages nilpotents, Nederl. Akad. Weten. Indag. Math., 41 (1979), 177-189. | MR | Zbl
,[10] Géométrie globale des feuilletages riemanniens, Akad. van Weten. Proceedings, 85 (1982), 45-76. | MR | Zbl
,[11] On the volume elements on a manifold, Trans. A.M.S., 120 (1965), 286-294. | MR | Zbl
,[12] Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, Com. Mat. Helv., 54 (1979), 224-239. | EuDML | MR | Zbl
,[13] On fibering certain foliated manifolds over S1, Topology, 9 (1970), 153-154. | MR | Zbl
,[14] The number of ends of the universal leaf of a riemannian foliation, to appear in Proc. of special year in Diff. Geom., University of Maryland, 1982. | Zbl
,- How highly connected can an orbifold be?, Revista Matemática Iberoamericana, Volume 39 (2023) no. 6, pp. 2171-2186 | DOI:10.4171/rmi/1375 | Zbl:1533.57063
- Leaf closures of Riemannian foliations: a survey on topological and geometric aspects of Killing foliations, Expositiones Mathematicae, Volume 40 (2022) no. 2, pp. 177-230 | DOI:10.1016/j.exmath.2021.11.002 | Zbl:1494.53026
- Equivariant basic cohomology under deformations, Mathematische Zeitschrift, Volume 299 (2021) no. 3-4, pp. 2461-2482 | DOI:10.1007/s00209-021-02768-w | Zbl:1482.53033
- Metric foliations of homogeneous three-spheres, Geometriae Dedicata, Volume 203 (2019), pp. 73-84 | DOI:10.1007/s10711-019-00426-4 | Zbl:1428.53033
- Cohomological tautness of singular Riemannian foliations, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 113 (2019) no. 4, pp. 4263-4286 | DOI:10.1007/s13398-018-0597-6 | Zbl:1427.53029
- Positively curved Killing foliations via deformations, Transactions of the American Mathematical Society, Volume 372 (2019) no. 11, pp. 8131-8158 | DOI:10.1090/tran/7893 | Zbl:1456.53023
- Equivariant basic cohomology of Riemannian foliations, Journal für die Reine und Angewandte Mathematik, Volume 745 (2018), pp. 1-40 | DOI:10.1515/crelle-2015-0102 | Zbl:1419.53030
- Riemannian foliations of spheres, Geometry Topology, Volume 20 (2016) no. 3, p. 1257 | DOI:10.2140/gt.2016.20.1257
- Differentiable classification of 4-manifolds with singular Riemannian foliations, Mathematische Annalen, Volume 363 (2015) no. 1-2, pp. 525-548 | DOI:10.1007/s00208-015-1172-5 | Zbl:1327.53054
- Riemannian foliations on contractible manifolds, Münster Journal of Mathematics, Volume 8 (2015) no. 1, pp. 1-16 | DOI:10.17879/65219682809 | Zbl:1377.53035
- Tenseness of Riemannian flows, Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1419-1439 | DOI:10.5802/aif.2885 | Zbl:1325.53036
- Modified differentials and basic cohomology for Riemannian foliations, The Journal of Geometric Analysis, Volume 23 (2013) no. 3, pp. 1314-1342 | DOI:10.1007/s12220-011-9289-6 | Zbl:1276.53031
- Collapsing, spectrum, and Diophantine properties of Riemannian flows, Annales de l'Institut Fourier, Volume 60 (2010) no. 1, pp. 257-290 | DOI:10.5802/aif.2522 | Zbl:1194.58030
- Minimizability of developable Riemannian foliations, Annals of Global Analysis and Geometry, Volume 38 (2010) no. 2, pp. 119-133 | DOI:10.1007/s10455-010-9203-7 | Zbl:1204.53021
- Rigidity of the Álvarez class, Manuscripta Mathematica, Volume 132 (2010) no. 1-2, pp. 257-271 | DOI:10.1007/s00229-010-0347-3 | Zbl:1193.53086
- Transverse LS category for Riemannian foliations, Transactions of the American Mathematical Society, Volume 361 (2009) no. 11, pp. 5647-5680 | DOI:10.1090/s0002-9947-09-04672-8 | Zbl:1200.57021
- Chapter 2 Foliations, Volume 2 (2006), p. 35 | DOI:10.1016/s1874-5741(06)80005-1
- Ends of leaves of Lie foliations, Journal of the Mathematical Society of Japan, Volume 57 (2005) no. 3 | DOI:10.2969/jmsj/1158241934
- On transverse Killing fields of metric foliations of manifolds with positive curvature, Manuscripta Mathematica, Volume 104 (2001) no. 4, pp. 527-531 | DOI:10.1007/s002290170025 | Zbl:0997.53022
- Classification globale des formes différentielles transitives sur la sphère S5, Integrable Systems and Foliations (1997), p. 157 | DOI:10.1007/978-1-4612-4134-8_9
- On the Betti Numbers of Nilpotent Lie Algebras of Small Dimension, Integrable Systems and Foliations (1997), p. 19 | DOI:10.1007/978-1-4612-4134-8_2
- AN INEQUALITY FOR INJECTIVITY RADII OF RIEMANNIAN MANIFOLDS WITH POSITIVE CURVATURE, Kyushu Journal of Mathematics, Volume 48 (1994) no. 2, p. 233 | DOI:10.2206/kyushujm.48.233
- On the signature of generalised Seifert fibrations, Bulletin of the Australian Mathematical Society, Volume 47 (1993) no. 1, pp. 55-58 | DOI:10.1017/s0004972700012259 | Zbl:0798.57016
- A CERTAIN INEQUALITY ON RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE, II, Memoirs of the Faculty of Science, Kyusyu University. Series A, Mathematics, Volume 47 (1993) no. 1, p. 41 | DOI:10.2206/kyushumfs.47.41
- Homogeneous foliations of spheres, Transactions of the American Mathematical Society, Volume 340 (1993) no. 1, p. 95 | DOI:10.1090/s0002-9947-1993-1080171-8
- Homogeneous foliations of spheres, Transactions of the American Mathematical Society, Volume 340 (1993) no. 1, pp. 95-102 | DOI:10.2307/2154547 | Zbl:0794.53019
- The basic component of the mean curvature of Riemannian foliations, Annals of Global Analysis and Geometry, Volume 10 (1992) no. 2, pp. 179-194 | DOI:10.1007/bf00130919 | Zbl:0759.57017
- Minimal foliations on Lie groups, Indagationes Mathematicae. New Series, Volume 3 (1992) no. 1, pp. 41-46 | DOI:10.1016/0019-3577(92)90026-h | Zbl:0766.53021
- A CERTAIN INEQUALITY ON RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE, Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics, Volume 46 (1992) no. 1, p. 105 | DOI:10.2206/kyushumfs.46.105
- Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. (Transversally elliptic operators for Riemannian foliations and appplications), Compositio Mathematica, Volume 73 (1990) no. 1, pp. 57-106 | Zbl:0697.57014
- Foliated G-structures and Riemannian foliations, Manuscripta Mathematica, Volume 66 (1989) no. 1, pp. 45-59 | DOI:10.1007/bf02568481 | Zbl:0686.57015
- The low-dimensional metric foliations of Euclidean spheres, Journal of Differential Geometry, Volume 28 (1988) no. 1 | DOI:10.4310/jdg/1214442164
- Flots riemanniens sur les 4-variétés compactes. (Riemannian flows on compact 4-manifolds), Tôhoku Mathematical Journal. Second Series, Volume 38 (1986) no. 1-2, pp. 313-326 | DOI:10.2748/tmj/1178228496 | Zbl:0603.57017
- Feuilletages de Killing. (Killing foliations), Collectanea Mathematica, Volume 36 (1985), pp. 285-290 | Zbl:0614.53030
Cité par 34 documents. Sources : Crossref, zbMATH