Fonctions à hessien borné
Annales de l'Institut Fourier, Tome 34 (1984) no. 2, pp. 155-190.

Cet article établit quelques propriétés des distributions sur un ouvert Ω de RN dont le hessien est une mesure bornée. Après quelques propriétés topologiques – Compacité faible des bornées de HB(Ω) lorsque Ω est borné, densité des fonctions régulières pour une topologie assez finie – on s’intéresse au comportement sur le bord de Ω lorsque Ω est assez régulier; pour ce faire, on est amené à étudier celui des fonctions de W2,1. On montre enfin dans une 3ème partie des théorèmes d’injection de Sobolev et notamment la continuité de telles fonctions.

This paper is concerned with some properties of distributions defined on an open set of RN the hessian of which is a bounded measure. We first state topological properties, as the weak compacity of bounded sets of HB(Ω) when Ω is bounded, the density of smooth functions for a topology sufficiently sharp. Then we address the questions of the behavior of such distribution on the boundary of Ω. This leads us to study the same question for functions of W2,1(Ω). Finally, we prove Sobolev imbedding Theorems appropriate in this context and specifically imbedding into some set of continuous functions.

@article{AIF_1984__34_2_155_0,
     author = {Demengel, Fran\c{c}oise},
     title = {Fonctions \`a hessien born\'e},
     journal = {Annales de l'Institut Fourier},
     pages = {155--190},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {34},
     number = {2},
     year = {1984},
     doi = {10.5802/aif.969},
     mrnumber = {85k:49040},
     zbl = {0525.46020},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.969/}
}
TY  - JOUR
AU  - Demengel, Françoise
TI  - Fonctions à hessien borné
JO  - Annales de l'Institut Fourier
PY  - 1984
SP  - 155
EP  - 190
VL  - 34
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.969/
DO  - 10.5802/aif.969
LA  - fr
ID  - AIF_1984__34_2_155_0
ER  - 
%0 Journal Article
%A Demengel, Françoise
%T Fonctions à hessien borné
%J Annales de l'Institut Fourier
%D 1984
%P 155-190
%V 34
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.969/
%R 10.5802/aif.969
%G fr
%F AIF_1984__34_2_155_0
Demengel, Françoise. Fonctions à hessien borné. Annales de l'Institut Fourier, Tome 34 (1984) no. 2, pp. 155-190. doi : 10.5802/aif.969. https://www.numdam.org/articles/10.5802/aif.969/

[1] Adams, Sobolev Spaces, Academic Press, New-York, 1975. | Zbl

[2] F. Demengel, Thèse de 3e cycle, Université Paris XI (1982).

[3] F. Demengel, Problèmes variationnels en plasticité parfaite des plaques, in Numerical Analysis and Optimization. Vol. 4. Août 1983. | Zbl

[4] F. Demengel et R. Temam. Fonctions convexes d'une mesure (à paraître dans Indiana Journal of Mathematics).

[5] J. Deny et J. L. Lions, Les espaces du type de Beppo Levi, Annales de l'Institut Fourier, 5 (1954), 305-370. | Numdam | Zbl

[6] E. Gagliardo, Caratterizzazioni delle trace sulla frontiera relative aleune classi di funzioni in n variabile, Rend. Sem. Mat. Padova, 27 (1957), 284-305. | Numdam | MR | Zbl

[7] E. Giusti, Minimal surfaces and functions of bounded variation. Notes de cours rédigées par G. H. Williams, Dep. of Math., Australian National University, Canberra, 10, 1977. | MR | Zbl

[8] C. Miranda, Comportamento delle succesioni convergenti di frontiere minimale. Rend. Semin. Univ. Padova, (1967), 238-257. | Numdam | Zbl

[9] J. J. Moreau, Champs et distributions de tenseurs déformation sur un ouvert de connexité quelconque, Séminaire d'Analyse Convexe, Université de Montpellier, 6 (1976). | MR | Zbl

[10] De Rham, Variétés différentiables, Hermann, Paris, 1960.

[11] J. Rauch et B. A. Taylor, Communication privée.

[12] Schwartz, Théorème des distributions, Hermann, Paris, 1950-1951 (2e édition 1957).

[13] G. Strang et R. Temam, Functions of bounded deformation, Arch. Rat. Mech. Anal., 75 (1980), 7-21. | MR | Zbl

[14] P. Suquet, Existence et régularité des solutions de la plasticité. C.R.A.S., Paris, 286, Série A (1978), 1201-1204. | MR | Zbl

[15] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 2e édition, North-Holland, Amsterdam, New-York, 1979. | Zbl

[16] R. Temam, On the continuity of the trace of vector functions with bounded deformations, Applicable Analysis, 11 (1981), 291-302. | MR | Zbl

  • Ferreira, Rita; Matias, José; Zappale, Elvira Junction in a thin multi-domain for nonsimple grade two materials in BH, Nonlinear Analysis: Real World Applications, Volume 84 (2025), p. 104322 | DOI:10.1016/j.nonrwa.2025.104322
  • Bužančić, Marin; Davoli, Elisa; Velčić, Igor Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure: The limiting regimes, Advances in Calculus of Variations, Volume 17 (2024) no. 4, p. 1399 | DOI:10.1515/acv-2023-0020
  • Ambrosio, Luigi; Aziznejad, Shayan; Brena, Camillo; Unser, Michael Linear inverse problems with Hessian–Schatten total variation, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 1 | DOI:10.1007/s00526-023-02611-6
  • Bužančić, Marin; Davoli, Elisa; Velčić, Igor Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 4 | DOI:10.1007/s00526-024-02693-w
  • Paroni, Roberto; Picchi Scardaoni, Marco From elastic shallow shells to beams with elastic hinges by Γ-convergence, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 4 | DOI:10.1007/s00033-024-02280-1
  • Bredies, Kristian; Iglesias, José A.; Mercier, Gwenael Boundedness and Unboundedness in Total Variation Regularization, Applied Mathematics Optimization, Volume 88 (2023) no. 2 | DOI:10.1007/s00245-023-10028-y
  • Ambrosio, Luigi; Brena, Camillo; Conti, Sergio Functions with Bounded Hessian–Schatten Variation: Density, Variational, and Extremality Properties, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 6 | DOI:10.1007/s00205-023-01938-w
  • Matias, José; Morandotti, Marco; Owen, David R. Mathematical Preliminaries, Energetic Relaxation to Structured Deformations (2023), p. 15 | DOI:10.1007/978-981-19-8800-4_2
  • Kong, Linghai; Wei, Suhua A variational method for Abel inversion tomography with mixed Poisson-Laplace-Gaussian noise, Inverse Problems and Imaging, Volume 16 (2022) no. 4, p. 967 | DOI:10.3934/ipi.2022007
  • Cozzi, Matteo; Lombardini, Luca On nonlocal minimal graphs, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 4 | DOI:10.1007/s00526-021-02002-9
  • Hakim, M.; Ghazdali, A.; Laghrib, A. A multi-frame super-resolution based on new variational data fidelity term, Applied Mathematical Modelling, Volume 87 (2020), p. 446 | DOI:10.1016/j.apm.2020.06.013
  • Holler, Martin; Weinmann, Andreas Non-smooth Variational Regularization for Processing Manifold-Valued Data, Handbook of Variational Methods for Nonlinear Geometric Data (2020), p. 51 | DOI:10.1007/978-3-030-31351-7_2
  • Bredies, Kristian; Holler, Martin Higher-order total variation approaches and generalisations, Inverse Problems, Volume 36 (2020) no. 12, p. 123001 | DOI:10.1088/1361-6420/ab8f80
  • Hagerty, Adrian Relaxation of functionals in the space of vector-valued functions of bounded Hessian, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 1 | DOI:10.1007/s00526-018-1452-5
  • Olbermann, Heiner On a Γ-Limit of Willmore Functionals with Additional Curvature Penalization Term, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, p. 2599 | DOI:10.1137/18m1203596
  • Olbermann, Heiner The shape of low energy configurations of a thin elastic sheet with a single disclination, Analysis PDE, Volume 11 (2018) no. 5, p. 1285 | DOI:10.2140/apde.2018.11.1285
  • Maggiani, G. B.; Mora, M. G. Quasistatic evolution of perfectly plastic shallow shells: a rigorous variational derivation, Annali di Matematica Pura ed Applicata (1923 -), Volume 197 (2018) no. 3, p. 775 | DOI:10.1007/s10231-017-0704-x
  • Laghrib, Amine; Ezzaki, Mahmoud; El Rhabi, Mohammed; Hakim, Abdelilah; Monasse, Pascal; Raghay, Said Simultaneous deconvolution and denoising using a second order variational approach applied to image super resolution, Computer Vision and Image Understanding, Volume 168 (2018), p. 50 | DOI:10.1016/j.cviu.2017.08.007
  • Kang, Myeongmin; Jung, Miyoun; Kang, Myungjoo Higher-order regularization based image restoration with automatic regularization parameter selection, Computers Mathematics with Applications, Volume 76 (2018) no. 1, p. 58 | DOI:10.1016/j.camwa.2018.04.004
  • Siddig, Abdelgader; Guo, Zhichang; Zhou, Zhenyu; Wu, Boying An image denoising model based on a fourth-order nonlinear partial differential equation, Computers Mathematics with Applications, Volume 76 (2018) no. 5, p. 1056 | DOI:10.1016/j.camwa.2018.05.040
  • Loewenhauser, Benedikt; Lellmann, Jan Functional Lifting for Variational Problems with Higher-Order Regularization, Imaging, Vision and Learning Based on Optimization and PDEs (2018), p. 101 | DOI:10.1007/978-3-319-91274-5_5
  • Olbermann, Heiner Michell trusses in two dimensions as a Γ Γ -limit of optimal design problems in linear elasticity, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 6 | DOI:10.1007/s00526-017-1266-x
  • March, Riccardo; Riey, Giuseppe Analysis of a variational model for motion compensated inpainting, Inverse Problems Imaging, Volume 11 (2017) no. 6, p. 997 | DOI:10.3934/ipi.2017046
  • Valkonen, T. The jump set under geometric regularisation. Part 2: Higher-order approaches, Journal of Mathematical Analysis and Applications, Volume 453 (2017) no. 2, p. 1044 | DOI:10.1016/j.jmaa.2017.04.037
  • Fuchs, Martin; Müller, Jan A higher order TV-type variational problem related to the denoising and inpainting of images, Nonlinear Analysis: Theory, Methods Applications, Volume 154 (2017), p. 122 | DOI:10.1016/j.na.2016.08.004
  • Bleyer, Jérémy; Carlier, Guillaume; Duval, Vincent; Mirebeau, Jean-Marie; Peyré, Gabriel AΓ-Convergence Result for the Upper Bound Limit Analysis of Plates, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 1, p. 215 | DOI:10.1051/m2an/2015040
  • De Los Reyes, J.C.; Schönlieb, C.-B.; Valkonen, T. The structure of optimal parameters for image restoration problems, Journal of Mathematical Analysis and Applications, Volume 434 (2016) no. 1, p. 464 | DOI:10.1016/j.jmaa.2015.09.023
  • Bergounioux, M. Mathematical Analysis of a Inf-Convolution Model for Image Processing, Journal of Optimization Theory and Applications, Volume 168 (2016) no. 1, p. 1 | DOI:10.1007/s10957-015-0734-8
  • Jung, Miyoun; Kang, Myungjoo Variational Image Colorization Models Using Higher-Order Mumford–Shah Regularizers, Journal of Scientific Computing, Volume 68 (2016) no. 2, p. 864 | DOI:10.1007/s10915-015-0162-9
  • Maggiani, Giovanni Battista; Mora, Maria Giovanna A dynamic evolution model for perfectly plastic plates, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 10, p. 1825 | DOI:10.1142/s0218202516500469
  • Parini, Enea; Ruf, Bernhard; Tarsi, Cristina Higher-order functional inequalities related to the clamped 1-biharmonic operator, Annali di Matematica Pura ed Applicata (1923 -), Volume 194 (2015) no. 6, p. 1835 | DOI:10.1007/s10231-014-0447-x
  • Davoli, Elisa; Mora, Maria Giovanna Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 3, p. 2581 | DOI:10.1007/s00526-015-0876-4
  • Papafitsoros, Konstantinos; Bredies, Kristian A study of the one dimensional total generalised variation regularisation problem, Inverse Problems Imaging, Volume 9 (2015) no. 2, p. 511 | DOI:10.3934/ipi.2015.9.511
  • Steidl, Gabriele Combined First and Second Order Variational Approaches for Image Processing, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 117 (2015) no. 2, p. 133 | DOI:10.1365/s13291-015-0113-2
  • Liang, Jingwei; Zhang, Xiaoqun Retinex by Higher Order Total Variation L1 L 1 Decomposition, Journal of Mathematical Imaging and Vision, Volume 52 (2015) no. 3, p. 345 | DOI:10.1007/s10851-015-0568-x
  • Lellmann, Jan; Papafitsoros, Konstantinos; Schönlieb, Carola; Spector, Daniel Analysis and Application of a Nonlocal Hessian, SIAM Journal on Imaging Sciences, Volume 8 (2015) no. 4, p. 2161 | DOI:10.1137/140993818
  • Bergounioux, Maïtine Second-order Variational Models for Image Texture Analysis, Volume 181 (2014), p. 35 | DOI:10.1016/b978-0-12-800091-5.00002-1
  • Papafitsoros, K.; Schönlieb, C. B. A Combined First and Second Order Variational Approach for Image Reconstruction, Journal of Mathematical Imaging and Vision, Volume 48 (2014) no. 2, p. 308 | DOI:10.1007/s10851-013-0445-4
  • Liu, Qiang; Gao, Tianling; Xia, Li Existence and uniqueness of weak solutions for some singular evolutionary system in image denoising, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 11, p. 1602 | DOI:10.1002/mma.2916
  • Bouchitté, Guy; Fragalà, Ilaria; Lucardesi, Ilaria Shape derivatives for minima of integral functionals, Mathematical Programming, Volume 148 (2014) no. 1-2, p. 111 | DOI:10.1007/s10107-013-0712-6
  • Davoli, Elisa; Mora, Maria Giovanna A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 4, p. 615 | DOI:10.1016/j.anihpc.2012.11.001
  • Bergounioux, Maïtine; Piffet, Loïc A full second order variational model for multiscale texture analysis, Computational Optimization and Applications, Volume 54 (2013) no. 2, p. 215 | DOI:10.1007/s10589-012-9484-9
  • Piffet, Loïc A Locally Anisotropic Model for Image Texture Extraction, Mathematical Image Processing, Volume 5 (2011), p. 141 | DOI:10.1007/978-3-642-19604-1_8
  • Bergounioux, Maïtine; Tran, Minh Phuong A Second Order Model for 3D-Texture Extraction, Mathematical Image Processing, Volume 5 (2011), p. 41 | DOI:10.1007/978-3-642-19604-1_2
  • Echegut, R.; Piffet, L. A Variational Model for Image Texture Identification, Recent Advances in Optimization and its Applications in Engineering (2010), p. 471 | DOI:10.1007/978-3-642-12598-0_41
  • Liu, Qiang; Yao, Zhengan; Ke, Yuanyuan Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal, Nonlinear Analysis: Theory, Methods Applications, Volume 67 (2007) no. 6, p. 1908 | DOI:10.1016/j.na.2006.08.016
  • Hinterberger, W.; Scherzer, O. Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising, Computing, Volume 76 (2006) no. 1-2, p. 109 | DOI:10.1007/s00607-005-0119-1
  • FONSECA, IRENE; LEONI, GIOVANNI; PARONI, ROBERTO ON HESSIAN MATRICES IN THE SPACE BH, Communications in Contemporary Mathematics, Volume 07 (2005) no. 04, p. 401 | DOI:10.1142/s0219199705001805
  • PERCIVALE, DANILO; TOMARELLI, FRANCO FROM SPECIAL BOUNDED DEFORMATION TO SPECIAL BOUNDED HESSIAN: THE ELASTIC–PLASTIC BEAM, Mathematical Models and Methods in Applied Sciences, Volume 15 (2005) no. 07, p. 1009 | DOI:10.1142/s0218202505000650
  • Fonseca, Irene; Leoni, Giovanni; Müller, Stefan A-quasiconvexity: weak-star convergence and the gap, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 21 (2004) no. 2, p. 209 | DOI:10.1016/j.anihpc.2003.01.003
  • Paroni, Roberto Second-Order Structured Deformations: Approximation Theorems and Energetics, Multiscale Modeling in Continuum Mechanics and Structured Deformations (2004), p. 177 | DOI:10.1007/978-3-7091-2770-4_5
  • Mabrouk, Mongi A variational principle for a nonlinear differential equation of second order, Advances in Applied Mathematics, Volume 31 (2003) no. 2, p. 388 | DOI:10.1016/s0196-8858(03)00018-6
  • Fonseca, Irene; Leoni, Giovanni Higher Order Variational Problems and Phase Transitions in Nonlinear Elasticity, Variational Methods for Discontinuous Structures (2002), p. 117 | DOI:10.1007/978-3-0348-8193-7_9
  • Percivale, Danilo Dimension Reduction in Continuum Mechanics, Variational Methods for Discontinuous Structures (2002), p. 155 | DOI:10.1007/978-3-0348-8193-7_11
  • Savaré, Giuseppe; Tomarelli, Franco Superposition and Chain Rule for Bounded Hessian Functions, Advances in Mathematics, Volume 140 (1998) no. 2, p. 237 | DOI:10.1006/aima.1998.1770
  • Lions, Pierre-Louis Sur les équations différentielles ordinaires et les équations de transport, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 326 (1998) no. 7, p. 833 | DOI:10.1016/s0764-4442(98)80022-0
  • Ambrosio, Luigi Free Discontinuity Problems and Special Functions with Bounded Variation, European Congress of Mathematics, Volume 168 (1998), p. 15 | DOI:10.1007/978-3-0348-8974-2_2
  • Bojarski, Jarosłlaw L. The relaxation of Signorini problems in Hencky plasticity, II: Plates, Nonlinear Analysis: Theory, Methods Applications, Volume 29 (1997) no. 10, p. 1117 | DOI:10.1016/s0362-546x(96)00102-2
  • Savaré, Giuseppe On the regularity of the positive part of functions, Nonlinear Analysis: Theory, Methods Applications, Volume 27 (1996) no. 9, p. 1055 | DOI:10.1016/0362-546x(95)00104-4
  • Telega, Józef Joachim Epi-limit on HB and homogenization of heterogeneous plastic plates, Nonlinear Analysis: Theory, Methods Applications, Volume 25 (1995) no. 5, p. 499 | DOI:10.1016/0362-546x(93)e0017-w
  • Carriero, Michele; Lead, Antonio; Tomarelli, Franco Strong solution for an elastic-plastic plate, Calculus of Variations and Partial Differential Equations, Volume 2 (1994) no. 2, p. 219 | DOI:10.1007/bf01191343
  • Tomarelli, Franco Special Bounded Hessian and Partial Regularity of Equilibrium for a Plastic Plate, Developments in Partial Differential Equations and Applications to Mathematical Physics (1992), p. 235 | DOI:10.1007/978-1-4615-3032-9_19
  • Yang, Wei H. A duality theorem for plastic torsion, International Journal of Solids and Structures, Volume 27 (1991) no. 15, p. 1981 | DOI:10.1016/0020-7683(91)90190-q
  • Temam, Roger A generalized Norton-Hoff Model and the Prandtl-Reuss Law of Plasticity, Analysis and Continuum Mechanics (1989), p. 309 | DOI:10.1007/978-3-642-83743-2_17
  • Demengel, Françoise Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Archive for Rational Mechanics and Analysis, Volume 105 (1989) no. 2, p. 123 | DOI:10.1007/bf00250834
  • Aviles, Patricio; Giga, Yoshikazu Singularities and rank one properties of Hessian measures, Duke Mathematical Journal, Volume 58 (1989) no. 2 | DOI:10.1215/s0012-7094-89-05820-1
  • Hadhri, T. Prise en compte d'une force linéique de frontière dans un modèle de plaques de Hencky comportant une non-linéarité géométrique, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 22 (1988) no. 3, p. 457 | DOI:10.1051/m2an/1988220304571
  • Lewiński, Tomasz; Telega, Józef Joachim Asymptotic method of homogenization of fissured elastic plates, Journal of Elasticity, Volume 19 (1988) no. 1, p. 37 | DOI:10.1007/bf00041694
  • Temam, Roger A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Archive for Rational Mechanics and Analysis, Volume 95 (1986) no. 2, p. 137 | DOI:10.1007/bf00281085
  • Hadhri, Taïeb Étude dans HB×BD d’un modèle de plaques élastoplastiques comportant une non-linéarité géométrique, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 19 (1985) no. 2, p. 235 | DOI:10.1051/m2an/1985190202351
  • Demengel, Françoise Problemes variationnels en plasticite parfaite des plaques, Numerical Functional Analysis and Optimization, Volume 6 (1983) no. 1, p. 73 | DOI:10.1080/01630568308816155

Cité par 71 documents. Sources : Crossref