Thin sets in nonlinear potential theory
Annales de l'Institut Fourier, Tome 33 (1983) no. 4, pp. 161-187.

Soit Lαq(RD),α>0,1<q<, l’espace des potentiels de Bessel f=Gα*g, gLq, avec la norme fα,q=gq. Pour α entier Lαq peut être identifié à l’espace de Sobolev Hα,q.

On peut associer une théorie du potentiel à ces espaces d’une manière semblable à la manière dont la théorie classique du potentiel est associée à l’espace H1,2, et en large partie la théorie a été étendue à cette situation plus générale autour de 1970. Néanmoins il y avait des problèmes à étendre la théorie des ensembles effilés. Moyennant une nouvelle inégalité, qui caractérise le cône positif dans l’espace dual de Lαq, nous comblons ce manque. Nous montrons qu’il y a une “bonne” définitions des ensembles effilés, telle que les propriétés de Kellogg et de Choquet aient lieu et telle qu’il y ait un critère de Wiener pour certains potentiels non-linéaires.

Comme conséquence de la propriété de Kellogg, le “théorème de synthèse spectrale” pour Hα,q, démontré antérieurement par l’un des auteurs pour p>2-α/d, s’étend au cas q>1.

Let Lαq(RD),α>0,1<q<, denote the space of Bessel potentials f=Gα*g, gLq, with norm fα,q=gq. For α integer Lαq can be identified with the Sobolev space Hα,q.

One can associate a potential theory to these spaces much in the same way as classical potential theory is associated to the space H1;2, and a considerable part of the theory was carried over to this more general context around 1970. There were difficulties extending the theory of thin sets, however. By means of a new inequality, which characterizes the positive cone in the space dual to Lαq, we fill this gap. We show that there is a “good” definition of thin sets, such that the Kellogg and Choquet properties hold, and such that there is a Wiener criterion for certain nonlinear potentials.

As a consequence of the Kellogg property the “spectral synthesis theorem” for Hα-q, previously proved by one of the authors for q>2-α/d, extends to q>1.

@article{AIF_1983__33_4_161_0,
     author = {Hedberg, Lars-Inge and Wolff, Thomas H.},
     title = {Thin sets in nonlinear potential theory},
     journal = {Annales de l'Institut Fourier},
     pages = {161--187},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {33},
     number = {4},
     year = {1983},
     doi = {10.5802/aif.944},
     mrnumber = {85f:31015},
     zbl = {0508.31008},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.944/}
}
TY  - JOUR
AU  - Hedberg, Lars-Inge
AU  - Wolff, Thomas H.
TI  - Thin sets in nonlinear potential theory
JO  - Annales de l'Institut Fourier
PY  - 1983
SP  - 161
EP  - 187
VL  - 33
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.944/
DO  - 10.5802/aif.944
LA  - en
ID  - AIF_1983__33_4_161_0
ER  - 
%0 Journal Article
%A Hedberg, Lars-Inge
%A Wolff, Thomas H.
%T Thin sets in nonlinear potential theory
%J Annales de l'Institut Fourier
%D 1983
%P 161-187
%V 33
%N 4
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.944/
%R 10.5802/aif.944
%G en
%F AIF_1983__33_4_161_0
Hedberg, Lars-Inge; Wolff, Thomas H. Thin sets in nonlinear potential theory. Annales de l'Institut Fourier, Tome 33 (1983) no. 4, pp. 161-187. doi : 10.5802/aif.944. https://www.numdam.org/articles/10.5802/aif.944/

[1] D. R. Adams and L. I. Hedberg, Inclusion relations among fine topologies in non-linear potential theory, Indiana Univ. Math. J., to appear. | Zbl

[2] D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197. | MR | Zbl

[3] T. Bagby, Quasi topologies and rational approximation, J. Funct. Anal., 10 (1972), 259-268. | MR | Zbl

[4] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions I, II. Proc. Cambridge Philos. Soc., 41 (1945), 103-110, ibid., 42 (1946), 1-10. | Zbl

[5] M. Brelot, Sur les ensembles effilés, Bull. Sci. Math., 68 (1944), 12-36. | MR | Zbl

[6] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer Verlag 1971. | MR | Zbl

[7] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math., 4 (1961), 33-49. | MR | Zbl

[8] L. Carleson, Selected problems on exceptional sets, Van Nostrand, 1967. | MR | Zbl

[9] G. Choquet, Sur les points d'effilement d'un ensemble. Application à l'étude de la capacité, Ann. Inst. Fourier, Grenoble, 9 (1959), 91-101. | Numdam | MR | Zbl

[10] G. Choquet, Convergence vague et suites de potentiels newtoniens, Bull. Sci. Math., 99 (1975), 157-164. | MR | Zbl

[11] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414. | JFM | MR | Zbl

[12] O. Frostman, Les points irréguliers dans la théorie du potentiel et le critère de Wiener, Kungl. Fysiogr. Sällsk. i Lund Förh., 9-2 (1939), 1-10. | JFM | Zbl

[13] B. Fuglede, Quasi topology and fine topology, Séminaire de Théorie du Potentiel, 10 (1965-1966), no. 12. | Numdam | Zbl

[14] B. Fuglede, The quasi topology associated with a countably additive set function, Ann. Inst. Fourier, Grenoble, 21-1 (1971), 123-169. | Numdam | Zbl

[15] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand., 45 (1979), 77-102. | MR | Zbl

[16] V. P. Havin, Approximation in the mean by analytic functions, Dokl. Akad. Nauk SSSR, 178 (1968), 1025-1028. | MR | Zbl

[17] L. I. Hedberg, Non-linear potentials and approximation in the mean by analytic functions, Math. Z., 129 (1972), 299-319. | MR | Zbl

[18] L. I. Hedberg, Two approximation problems in function spaces, Ark. Mat., 16 (1978), 51-81. | MR | Zbl

[19] L. I. Hedberg, Spectral synthesis and stability in Sobolev spaces, in Euclidean harmonic analysis (Proc., Univ. of Maryland, 1979), Lecture Notes in Math., 779, 73-103, Springer Verlag 1980. | Zbl

[20] L. I. Hedberg, Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem, Acta Math., 147 (1981), 237-264. | MR | Zbl

[21] L. I. Hedberg, On the Dirichlet problem for higher order equations, in Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago 1981), 620-633. Wadsworth, 1983. | Zbl

[22] T. Kolsrud, A uniqueness theorem for higher order elliptic partial differential equations, Math. Scand., 51 (1982), 323-332. | MR | Zbl

[23] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow 1966. (English translation, Springer-Verlag 1972). | Zbl

[24] V. G. Maz'Ja and V. P. Havin, Non-linear potential theory, Uspehi Mat. Nauk, 27-6 (1972), 67-138. | Zbl

[25] N. G. Meyers, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | MR | Zbl

[26] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. | MR | Zbl

  • Lei, Yutian Asymptotic behavior of an integral equation of Allen-Cahn type, Quarterly of Applied Mathematics (2025) | DOI:10.1090/qam/1702
  • Chlebicka, Iwona; Giannetti, Flavia; Zatorska-Goldstein, Anna Wolff potentials and local behavior of solutions to elliptic problems with Orlicz growth and measure data, Advances in Calculus of Variations, Volume 17 (2024) no. 4, p. 1293 | DOI:10.1515/acv-2023-0005
  • Lahrache, Manar; Rhoudaf, Mohamed; Talbi, Hajar Existence of solutions to a strongly nonlinear elliptic coupled system of finite order, Advances in Operator Theory, Volume 9 (2024) no. 3 | DOI:10.1007/s43036-024-00350-9
  • LI, CHUNHONG; LEI, YUTIAN SUMMABILITY AND ASYMPTOTICS OF POSITIVE SOLUTIONS OF AN EQUATION OF WOLFF TYPE, Bulletin of the Australian Mathematical Society, Volume 110 (2024) no. 3, p. 535 | DOI:10.1017/s0004972724000364
  • Mingione, Giuseppe Nonlinear Potential Theoretic Methods in Nonuniformly Ellliptic Problems, Geometric and Analytic Aspects of Functional Variational Principles, Volume 2348 (2024), p. 65 | DOI:10.1007/978-3-031-67601-7_2
  • Gkikas, Konstantinos T. Quasilinear elliptic equations involving measure valued absorption terms and measure data, Journal d'Analyse Mathématique, Volume 153 (2024) no. 2, p. 555 | DOI:10.1007/s11854-023-0321-0
  • Zhang, Zexin; Zhang, Zhitao Decay estimates of positive finite energy solutions to quasilinear and fully nonlinear systems in RN, Journal of Differential Equations, Volume 404 (2024), p. 1 | DOI:10.1016/j.jde.2024.05.028
  • da Silva, Estevan Luiz; do Ó, João Marcos Quasilinear Lane–Emden type systems with sub-natural growth terms, Nonlinear Analysis, Volume 242 (2024), p. 113516 | DOI:10.1016/j.na.2024.113516
  • da Silva, Estevan Luiz; do Ó, João Marcos Hessian Lane-Emden Type Systems with Measures Involving Sub-natural Growth Terms, Potential Analysis (2024) | DOI:10.1007/s11118-024-10166-0
  • Zhou, Tiantian On existence of positive solutions of p -Laplace equations, Quaestiones Mathematicae, Volume 47 (2024) no. 8, p. 1649 | DOI:10.2989/16073606.2024.2330016
  • Ma, Lingwei; Zhang, Zhenqiu Partial regularity and nonlinear potential estimates for Stokes systems with super-quadratic growth, Science China Mathematics, Volume 67 (2024) no. 7, p. 1525 | DOI:10.1007/s11425-022-2137-x
  • Biliatto, Victor; Picon, Tiago A Note on Lebesgue Solvability of Elliptic Homogeneous Linear Equations with Measure Data, The Journal of Geometric Analysis, Volume 34 (2024) no. 1 | DOI:10.1007/s12220-023-01457-w
  • Bai, Yan; Zhang, Zexin; Zhang, Zhitao Integrability and Symmetry of Positive Integrable Solutions for Weighted Wolff-Type Integral Systems, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01605-w
  • Karakhanyan, Aram L. Singular Yamabe problem for scalar flat metrics on the sphere, manuscripta mathematica, Volume 174 (2024) no. 3-4, p. 875 | DOI:10.1007/s00229-023-01527-x
  • Verbitsky, Igor E. Bilateral estimates of solutions to quasilinear elliptic equations with sub-natural growth terms, Advances in Calculus of Variations, Volume 16 (2023) no. 1, p. 217 | DOI:10.1515/acv-2021-0004
  • Chlebicka, Iwona; Youn, Yeonghun; Zatorska-Goldstein, Anna Wolff potentials and measure data vectorial problems with Orlicz growth, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 2 | DOI:10.1007/s00526-022-02402-5
  • Zhang, Zexin; Zhang, Zhitao Integrability, regularity and symmetry of positive integrable solutions for Wolff type integral systems, Journal of Differential Equations, Volume 357 (2023), p. 275 | DOI:10.1016/j.jde.2023.02.010
  • Shlapunov, Alexander; Shefer, Yulia On the uniqueness theorems for transmission problems related to models of elasticity, diffusion and electrocardiography, Journal of Inverse and Ill-posed Problems, Volume 0 (2023) no. 0 | DOI:10.1515/jiip-2021-0071
  • Li, Ling; Liu, Xiaoqian Liouville theorem and qualitative properties of solutions for an integral system, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 12, p. 12867 | DOI:10.1002/mma.9218
  • Nguyen, Quoc-Hung Potential Estimates and Quasilinear Parabolic Equations with Measure Data, Memoirs of the American Mathematical Society, Volume 291 (2023) no. 1449 | DOI:10.1090/memo/1449
  • Hinz, M.; Masamune, J.; Suzuki, K. Removable sets andLp-uniqueness on manifolds and metric measure spaces, Nonlinear Analysis, Volume 234 (2023), p. 113296 | DOI:10.1016/j.na.2023.113296
  • Benyaiche, Allami; Khlifi, Ismail Wolff Potential Estimates for Supersolutions of Equations with Generalized Orlicz Growth, Potential Analysis, Volume 58 (2023) no. 4, p. 761 | DOI:10.1007/s11118-021-09958-5
  • Verbitsky, I. Global pointwise estimates of positive solutions to sublinear equations, St. Petersburg Mathematical Journal, Volume 34 (2023) no. 3, p. 531 | DOI:10.1090/spmj/1768
  • Kalinin, Vitaly; Shlapunov, Alexander; Ushenin, Konstantin On uniqueness theorems for the inverse problem of electrocardiography in the Sobolev spaces, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 103 (2023) no. 1 | DOI:10.1002/zamm.202100217
  • Phuc, Nguyen Cong; Verbitsky, Igor E. BMO solutions to quasilinear equations of p-Laplace type, Annales de l'Institut Fourier, Volume 72 (2022) no. 5, p. 1911 | DOI:10.5802/aif.3485
  • Xiong, Qi; Zhang, Zhenqiu; Ma, Lingwei Gradient potential estimates in elliptic obstacle problems with Orlicz growth, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 3 | DOI:10.1007/s00526-022-02196-6
  • Hinz, Michael; Tölle, Jonas M.; Viitasaari, Lauri Sobolev regularity of occupation measures and paths, variability and compositions, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp797
  • Li, Guoliang; Wang, Guanglan; Zhang, Lei; Xu, Jingshi A Capacity Associated with the Weighted Lebesgue Space and Its Applications, Journal of Function Spaces, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/1257963
  • Shlapunov, A. A. On the Approximation of Solutions to the Heat Equation in the Lebesgue Class L2 by More Regular Solutions, Mathematical Notes, Volume 111 (2022) no. 5-6, p. 782 | DOI:10.1134/s0001434622050121
  • Phuc, Nguyen Cong; Verbitsky, Igor E. Uniqueness of entire solutions to quasilinear equations of p-Laplace type, Mathematics in Engineering, Volume 5 (2022) no. 3, p. 1 | DOI:10.3934/mine.2023068
  • Ma, Lingwei; Zhang, Zhenqiu; Zhou, Feng Nonlinear Potential Estimates for Generalized Stokes System, Mediterranean Journal of Mathematics, Volume 19 (2022) no. 5 | DOI:10.1007/s00009-022-02135-x
  • Chlebicka, Iwona; Zatorska-Goldstein, Anna Generalized Superharmonic Functions with Strongly Nonlinear Operator, Potential Analysis, Volume 57 (2022) no. 3, p. 379 | DOI:10.1007/s11118-021-09920-5
  • Li, Ling; Zhang, Rong Wolff-type integral system including m equations, Quaestiones Mathematicae, Volume 45 (2022) no. 2, p. 223 | DOI:10.2989/16073606.2020.1854362
  • Zhang, Rong ON THE WOLFF-TYPE INTEGRAL SYSTEM WITH NEGATIVE EXPONENTS, Rocky Mountain Journal of Mathematics, Volume 52 (2022) no. 6 | DOI:10.1216/rmj.2022.52.2211
  • Shlapunov, Aleksandr Anatol'evich Об аппроксимации решений уравнения теплопроводности класса Лебега L2 более регулярными решениями, Математические заметки, Volume 111 (2022) no. 5, p. 778 | DOI:10.4213/mzm13201
  • Chen, Huantong; Li, Xiang; Yang, Minbo Radial symmetry for a weighted integral equation of Wolff type, Applied Mathematics Letters, Volume 115 (2021), p. 106951 | DOI:10.1016/j.aml.2020.106951
  • Ma, Lingwei; Zhang, Zhenqiu Wolff type potential estimates for stationary Stokes systems with Dini-BMO coefficients, Communications in Contemporary Mathematics, Volume 23 (2021) no. 07 | DOI:10.1142/s0219199720500649
  • Xiong, Qi; Zhang, Zhenqiu Gradient potential estimates for elliptic obstacle problems, Journal of Mathematical Analysis and Applications, Volume 495 (2021) no. 1, p. 124698 | DOI:10.1016/j.jmaa.2020.124698
  • Liu, Xiaoqian; Li, Ling Integrability of solutions for the integral system, Journal of Mathematical Analysis and Applications, Volume 499 (2021) no. 1, p. 125011 | DOI:10.1016/j.jmaa.2021.125011
  • Hara, Takanobu Quasilinear elliptic equations with sub-natural growth terms in bounded domains, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 6 | DOI:10.1007/s00030-021-00724-5
  • Seesanea, Adisak; Verbitsky, Igor E. Finite energy solutions to inhomogeneous nonlinear elliptic equations with sub-natural growth terms, Advances in Calculus of Variations, Volume 13 (2020) no. 1, p. 53 | DOI:10.1515/acv-2017-0035
  • Skrypnik, Igor I.; Voitovych, Mykhailo V. On the generalized Um,pf classes of De Giorgi-Ladyzhenskaya-Ural'tseva and pointwise estimates of solutions to high-order elliptic equations via Wolff potentials, Journal of Differential Equations, Volume 268 (2020) no. 11, p. 6778 | DOI:10.1016/j.jde.2019.11.051
  • Huang, Shuibo Quasilinear elliptic equations with exponential nonlinearity and measure data, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 6, p. 2883 | DOI:10.1002/mma.6088
  • Mingione, Giuseppe; Palatucci, Giampiero Developments and perspectives in Nonlinear Potential Theory, Nonlinear Analysis, Volume 194 (2020), p. 111452 | DOI:10.1016/j.na.2019.02.006
  • Verbitsky, Igor E. Wolff’s inequality for intrinsic nonlinear potentials and quasilinear elliptic equations, Nonlinear Analysis, Volume 194 (2020), p. 111516 | DOI:10.1016/j.na.2019.04.015
  • Hara, Takanobu; Seesanea, Adisak Existence of minimal solutions to quasilinear elliptic equations with several sub-natural growth terms, Nonlinear Analysis, Volume 197 (2020), p. 111847 | DOI:10.1016/j.na.2020.111847
  • Björn, Anders; Hansevi, Daniel Boundary Regularity for p-Harmonic Functions and Solutions of Obstacle Problems on Unbounded Sets in Metric Spaces, Analysis and Geometry in Metric Spaces, Volume 7 (2019) no. 1, p. 179 | DOI:10.1515/agms-2019-0009
  • Björn, Anders The Kellogg property and boundary regularity forp-harmonic functions with respect to the Mazurkiewicz boundary and other compactifications, Complex Variables and Elliptic Equations, Volume 64 (2019) no. 1, p. 40 | DOI:10.1080/17476933.2017.1410799
  • Shefer, Yulia; Shlapunov, Alexander On regularization of the Cauchy problem for elliptic systems in weighted Sobolev spaces, Journal of Inverse and Ill-posed Problems, Volume 27 (2019) no. 6, p. 815 | DOI:10.1515/jiip-2018-0010
  • Xiao, Yayuan Wolff potentials and regularity of solutions to integral systems on spaces of homogeneous type, Journal of Mathematical Analysis and Applications, Volume 472 (2019) no. 2, p. 1509 | DOI:10.1016/j.jmaa.2018.12.006
  • Voitovych, Mykhailo V. Pointwise estimates of solutions to2m-order quasilinear elliptic equations withm-(p,q)growth via Wolff potentials, Nonlinear Analysis, Volume 181 (2019), p. 147 | DOI:10.1016/j.na.2018.11.011
  • Voitovych, Mykhailo Continuity of weak solutions to nonlinear fourth-order equations with strengthened ellipticity via Wolff potentials, Proceedings of the Institute of Applied Mathematics and Mechanics NAS of Ukraine, Volume 33 (2019), p. 33 | DOI:10.37069/1683-4720-2019-33-3
  • Björn, Anders; Björn, Jana; Latvala, Visa The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces, Journal d'Analyse Mathématique, Volume 135 (2018) no. 1, p. 59 | DOI:10.1007/s11854-018-0029-8
  • Cianchi, A.; Schwarzacher, S. Potential estimates for the p-Laplace system with data in divergence form, Journal of Differential Equations, Volume 265 (2018) no. 1, p. 478 | DOI:10.1016/j.jde.2018.02.038
  • Baroni, Paolo On the relation between generalized Morrey spaces and measure data problems, Nonlinear Analysis, Volume 177 (2018), p. 24 | DOI:10.1016/j.na.2018.06.011
  • Lei, Yutian Qualitative properties of positive solutions of quasilinear equations with Hardy terms, Forum Mathematicum, Volume 29 (2017) no. 5, p. 1177 | DOI:10.1515/forum-2014-0173
  • Cao, Dat; Verbitsky, Igor Nonlinear elliptic equations and intrinsic potentials of Wolff type, Journal of Functional Analysis, Volume 272 (2017) no. 1, p. 112 | DOI:10.1016/j.jfa.2016.10.010
  • Mingione, Giuseppe Short Tales from Nonlinear Calderón-Zygmund Theory, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Volume 2186 (2017), p. 159 | DOI:10.1007/978-3-319-61494-6_4
  • Adams, David R.; Xiao, Jie Restrictions of Riesz–Morrey potentials, Arkiv för Matematik, Volume 54 (2016) no. 2, p. 201 | DOI:10.1007/s11512-016-0238-2
  • Lu, Zhongxue; Chen, Wu Existence and nonexistence of positive solutions to an integral system involving Wolff potential, Communications on Pure and Applied Analysis, Volume 15 (2016) no. 2, p. 385 | DOI:10.3934/cpaa.2016.15.385
  • Kuusi, Tuomo; Mingione, Giuseppe Nonlinear Potential Theory of elliptic systems, Nonlinear Analysis, Volume 138 (2016), p. 277 | DOI:10.1016/j.na.2015.12.022
  • Cao, Dat T.; Verbitsky, Igor E. Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations, Nonlinear Analysis, Volume 146 (2016), p. 1 | DOI:10.1016/j.na.2016.08.008
  • Tanaka, Hitoshi The n Linear Embedding Theorem, Potential Analysis, Volume 44 (2016) no. 4, p. 793 | DOI:10.1007/s11118-015-9531-0
  • 王, 墨琴 Gradient Estimates for Quasilinear Elliptic p-Laplacean Equations, Pure Mathematics, Volume 06 (2016) no. 05, p. 441 | DOI:10.12677/pm.2016.65060
  • Shlapunov, A. A.; Tarkhanov, N. Sturm–Liouville problems in weighted spaces in domains with nonsmooth edges. I, Siberian Advances in Mathematics, Volume 26 (2016) no. 1, p. 30 | DOI:10.3103/s105513441601003x
  • Shlapunov, A. A.; Tarkhanov, N. N. Sturm–Liouville problems in weighted spaces in domains with non-smooth edges. II, Siberian Advances in Mathematics, Volume 26 (2016) no. 4, p. 247 | DOI:10.3103/s1055134416040027
  • Dat, Cao Tien; Verbitsky, Igor E. Finite energy solutions of quasilinear elliptic equations with sub-natural growth terms, Calculus of Variations and Partial Differential Equations, Volume 52 (2015) no. 3-4, p. 529 | DOI:10.1007/s00526-014-0722-0
  • Lei, Yutian Wolff type potential estimates and application to nonlinear equations with negative exponents, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 5, p. 2067 | DOI:10.3934/dcds.2015.35.2067
  • Verbitsky, Igor E. The Hessian Sobolev inequality and its extensions, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 12, p. 6165 | DOI:10.3934/dcds.2015.35.6165
  • Lei, Yutian; Li, Congming Sharp criteria of Liouville type for some nonlinear systems, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 6, p. 3277 | DOI:10.3934/dcds.2016.36.3277
  • Cascante, C.; Fàbrega, J.; Ortega, J. M. Holomorphic potentials and multipliers for Hardy-Sobolev spaces, Monatshefte für Mathematik, Volume 177 (2015) no. 2, p. 185 | DOI:10.1007/s00605-014-0688-1
  • Tupputi, Maria Rosaria Weighted Inequalities in Some Potential Spaces on the Upper Half Space of ℝ n+1, Potential Analysis, Volume 42 (2015) no. 1, p. 293 | DOI:10.1007/s11118-014-9434-5
  • Kuusi, Tuomo; Mingione, Giuseppe Riesz Potentials and Nonlinear Parabolic Equations, Archive for Rational Mechanics and Analysis, Volume 212 (2014) no. 3, p. 727 | DOI:10.1007/s00205-013-0695-8
  • Kuusi, Tuomo; Mingione, Giuseppe Guide to nonlinear potential estimates, Bulletin of Mathematical Sciences, Volume 4 (2014) no. 1, p. 1 | DOI:10.1007/s13373-013-0048-9
  • Chen, Huan; Lü, Zhongxue The properties of positive solutions to an integral system involving Wolff potential, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 5, p. 1879 | DOI:10.3934/dcds.2014.34.1879
  • Brewster, Kevin; Mitrea, Dorina; Mitrea, Irina; Mitrea, Marius Extending Sobolev functions with partially vanishing traces from locally(ε,δ)-domains and applications to mixed boundary problems, Journal of Functional Analysis, Volume 266 (2014) no. 7, p. 4314 | DOI:10.1016/j.jfa.2014.02.001
  • Kuusi, Tuomo; Mingione, Giuseppe Borderline gradient continuity for nonlinear parabolic systems, Mathematische Annalen, Volume 360 (2014) no. 3-4, p. 937 | DOI:10.1007/s00208-014-1055-1
  • Arcozzi, Nicola; Rochberg, Richard; Sawyer, Eric T.; Wick, Brett D. Potential Theory on Trees, Graphs and Ahlfors-regular Metric Spaces, Potential Analysis, Volume 41 (2014) no. 2, p. 317 | DOI:10.1007/s11118-013-9371-8
  • Mingione, Giuseppe Recent Advances in Nonlinear Potential Theory, Trends in Contemporary Mathematics, Volume 8 (2014), p. 277 | DOI:10.1007/978-3-319-05254-0_20
  • Kuusi, Tuomo; Mingione, Giuseppe Linear Potentials in Nonlinear Potential Theory, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 1, p. 215 | DOI:10.1007/s00205-012-0562-z
  • Chen, Huan-Zhen; Lü, Zhongxue Positive solutions to involving Wolff potentials, Communications on Pure and Applied Analysis, Volume 13 (2013) no. 2, p. 773 | DOI:10.3934/cpaa.2014.13.773
  • Adams, David R.; Eiderman, Vladimir Ya. Singular Operators with Antisymmetric Kernels, Related Capacities, and Wolff Potentials, International Mathematics Research Notices, Volume 2012 (2012) no. 24, p. 5554 | DOI:10.1093/imrn/rnr258
  • Ferrari, Fausto; Franchi, Bruno; Verbitsky, Igor E. Hessian inequalities and the fractional Laplacian, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 667 | DOI:10.1515/crelle.2011.116
  • Lei, Yutian; Li, Congming Integrability and asymptotics of positive solutions of a γ-Laplace system, Journal of Differential Equations, Volume 252 (2012) no. 3, p. 2739 | DOI:10.1016/j.jde.2011.10.009
  • Sun, Sha; Lei, Yutian Fast decay estimates for integrable solutions of the Lane–Emden type integral systems involving the Wolff potentials, Journal of Functional Analysis, Volume 263 (2012) no. 12, p. 3857 | DOI:10.1016/j.jfa.2012.09.012
  • Sjödin, Tord Wolff’s inequality in multi-parameter Morrey spaces, Mathematische Zeitschrift, Volume 271 (2012) no. 3-4, p. 781 | DOI:10.1007/s00209-011-0890-y
  • Kuusi, Tuomo; Mingione, Giuseppe Pointwise gradient estimates, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 12, p. 4650 | DOI:10.1016/j.na.2011.11.021
  • Kilpeläinen, Tero; Kuusi, Tuomo; Tuhola-Kujanpää, Anna Superharmonic functions are locally renormalized solutions, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 6, p. 775 | DOI:10.1016/j.anihpc.2011.03.004
  • Lei, Yutian; Li, Congming; Ma, Chao Decay estimation for positive solutions of a γ-Laplace equation, Discrete Continuous Dynamical Systems - A, Volume 30 (2011) no. 2, p. 547 | DOI:10.3934/dcds.2011.30.547
  • Mingione, Giuseppe Nonlinear Measure Data Problems, Milan Journal of Mathematics, Volume 79 (2011) no. 2, p. 429 | DOI:10.1007/s00032-011-0168-1
  • Lei, Yutian Decay Rates for Solutions of an Integral System of Wolff Type, Potential Analysis, Volume 35 (2011) no. 4, p. 387 | DOI:10.1007/s11118-010-9218-5
  • Lei, Yutian; Ma, Chao Radial symmetry and decay rates of positive solutions of a Wolff type integral system, Proceedings of the American Mathematical Society, Volume 140 (2011) no. 2, p. 541 | DOI:10.1090/s0002-9939-2011-11401-1
  • Frazier, Michael W.; Verbitsky, Igor E. Global Green’s Function Estimates, Around the Research of Vladimir Maz'ya III, Volume 13 (2010), p. 105 | DOI:10.1007/978-1-4419-1345-6_5
  • Duzaar, Frank; Mingione, Giuseppe Gradient continuity estimates, Calculus of Variations and Partial Differential Equations, Volume 39 (2010) no. 3-4, p. 379 | DOI:10.1007/s00526-010-0314-6
  • Lukkari, Teemu; Maeda, Fumi-Yuki; Marola, Niko Wolff potential estimates for elliptic equations with nonstandard growth and applications, Forum Mathematicum, Volume 22 (2010) no. 6, p. 1061 | DOI:10.1515/forum.2010.057
  • Mingione, Giuseppe Nonlinear Aspects of Calderón-Zygmund Theory, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 112 (2010) no. 3, p. 159 | DOI:10.1365/s13291-010-0004-5
  • Duzaar, Frank; Mingione, Giuseppe Gradient estimates via linear and nonlinear potentials, Journal of Functional Analysis, Volume 259 (2010) no. 11, p. 2961 | DOI:10.1016/j.jfa.2010.08.006
  • Frazier, Michael; Verbitsky, Igor Solvability Conditions for a Discrete Model of Schrödinger’s Equation, Analysis, Partial Differential Equations and Applications (2009), p. 65 | DOI:10.1007/978-3-7643-9898-9_7
  • Liu, Shumao Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Analysis: Theory, Methods Applications, Volume 71 (2009) no. 5-6, p. 1796 | DOI:10.1016/j.na.2009.01.014
  • Vodop’yanov, S. K.; Kudryavtseva, N. A. Nonlinear potential theory for Sobolev spaces on Carnot groups, Siberian Mathematical Journal, Volume 50 (2009) no. 5, p. 803 | DOI:10.1007/s11202-009-0091-7
  • Cirmi, G.R.; Leonardi, S. Regularity results for solutions of nonlinear elliptic equations with data, Nonlinear Analysis: Theory, Methods Applications, Volume 69 (2008) no. 1, p. 230 | DOI:10.1016/j.na.2007.05.014
  • Björn, Jana Fine continuity on metric spaces, manuscripta mathematica, Volume 125 (2008) no. 3, p. 369 | DOI:10.1007/s00229-007-0154-7
  • Cascante, Carme; Ortega, Joaquin M. Carleson measures for weighted Hardy-sobolev spaces, Nagoya Mathematical Journal, Volume 186 (2007), p. 29 | DOI:10.1017/s0027763000009351
  • Maz’ya, V.G.; Verbitsky, I.E. Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Inventiones mathematicae, Volume 162 (2005) no. 1, p. 81 | DOI:10.1007/s00222-005-0439-y
  • Lu, Guo Zhen Potential Analysis on Carnot Groups, Part II: Relationship between Hausdorff Measures and Capacities, Acta Mathematica Sinica, English Series, Volume 20 (2004) no. 1, p. 25 | DOI:10.1007/s10114-003-0297-8
  • Labutin, Denis A. Potential estimates for a class of fully nonlinear elliptic equations, Duke Mathematical Journal, Volume 111 (2002) no. 1 | DOI:10.1215/s0012-7094-02-11111-9
  • Hedenmalm, Håkan The dual of a bergman space on simply connected domains, Journal d'Analyse Mathématique, Volume 88 (2002) no. 1, p. 311 | DOI:10.1007/bf02786580
  • Bagby, Thomas; Castañeda, Nelson Sobolev spaces and approximation problems for differential operators, Approximation, Complex Analysis, and Potential Theory (2001), p. 73 | DOI:10.1007/978-94-010-0979-9_3
  • Björn, Jana; MacManus, Paul; Shanmugalingam, Nageswari Fat sets and pointwise boundary estimates forp-harmonic functions in metric spaces, Journal d'Analyse Mathématique, Volume 85 (2001) no. 1, p. 339 | DOI:10.1007/bf02788087
  • Cascante, Carme; Ortega, Joaquin M. Norm Inequalities for Potential-Type Operators in Homogeneous Spaces, Mathematische Nachrichten, Volume 228 (2001) no. 1, p. 85 | DOI:10.1002/1522-2616(200108)228:1<85::aid-mana85>3.0.co;2-d
  • Korey, Michael; Tarkhanov, Nikolai BMO Functions on Compact Sets, Mathematische Nachrichten, Volume 199 (1999) no. 1, p. 76 | DOI:10.1002/mana.19991990105
  • Verbitsky, I. E. Nonlinear potentials and trace inequalities, The Maz’ya Anniversary Collection (1999), p. 323 | DOI:10.1007/978-3-0348-8672-7_18
  • Kalton, N.; Verbitsky, I. Nonlinear equations and weighted norm inequalities, Transactions of the American Mathematical Society, Volume 351 (1999) no. 9, p. 3441 | DOI:10.1090/s0002-9947-99-02215-1
  • Dal Maso, Gianni; Garroni, Adriana; Skrypnik, Igor V. A capacitary method for the asymptotic analysis of dirichlet problems for monotone operators, Journal d’Analyse Mathématique, Volume 71 (1997) no. 1, p. 263 | DOI:10.1007/bf02788033
  • Netrusov, Yu. V. Spectral synthesis in the sobolev space generated by an integral metric, Journal of Mathematical Sciences, Volume 85 (1997) no. 2, p. 1814 | DOI:10.1007/bf02355292
  • Aikawa, Hiroaki Bessel capacity, Hausdorff content and the tangential boundary behavior of harmonic functions, Hiroshima Mathematical Journal, Volume 26 (1996) no. 2 | DOI:10.32917/hmj/1206127368
  • Aikawa, Hiroaki Potential theory part II, Potential Theory—Selected Topics, Volume 1633 (1996), p. 102 | DOI:10.1007/bfb0093412
  • Belousov, V. D.; Plisko, V. E.; Yanovskaya, E. B.; Sokolov, D. D.; Maslov, S. Yu.; Bukhshtab, A. A.; Nechaev, V. I.; Paskonov, V. M.; Artamonov, V. A.; Prokhorov, A. V.; Efimov, N. V.; Khvedelidze, B. V.; Dolgachev, I. V.; Iskovskikh, V. A.; Ivanov, A. B.; Bazylev, V. T.; Arkhangel’skiĭ, A. V.; Sapozhenko, A. A.; Saltan, P. S.; Soltan, P. S.; Chuyanov, V. A.; Farber, M. Sh.; Shvedenko, S. V.; Petrenko, V. P.; Mysovskikh, I. P.; Trenogin, V. A.; Samarin, M. K.; Kuznetsov, Yu. A.; Solomentsev, E. D.; Nikulin, M. S.; Kudryavtsev, L. D.; Latyshev, V. N.; Anosov, D. V.; Shmel’kin, A. L.; Shevrin, L. N.; Kuz’min, L. V.; Popov, V. L.; Alekseevskiĭ, D. V.; Remeslennikov, V. N.; Dobrushin, P. L.; Prelov, V. V.; Khovanskiĭ, G. S.; Onishchik, A. L.; Tolpygo, A. K.; Sidorov, L. A.; Bokut’, L. A.; Kiruta, A. Ya.; Palyutin, E. A.; Taĭmanov, A. D.; Vilkas, E. I.; Rumyantsev, V. V.; D’yakonov, E. G.; Shapkin, A. F.; Evtushik, L. E.; Sobolev, V. I.; Starszhinskiĭ, V. M.; Pokhozhaev, S. J.; Karmanov, V. G.; Voitsekhovskiĭ, M. I.; Komlenko, Yu. V.; Nikitin, Ya. Yu.; Grishin, V. N.; Sadovnichiĭ, V. A.; Rudyak, Yu. I.; Dragalin, A. G.; Gorin, E. A.; Ivanova, O. A.; Danilov, V. I.; Nagornyĭ, N. M.; Akhiezer, D. N.; Minlos, R. A.; Bryuno, A. D.; Millionshchikov, V. M.; Stepanov, S. A.; Vil’yams, N. N.; Aleksandrov, P. S.; Talalyan, A. A.; Litvinov, G. L.; Klimov, N. I.; Karatsuba, A. A.; Kubilyus, I. P.; Rozov, N. Kh. N, Encyclopaedia of Mathematics (1995), p. 67 | DOI:10.1007/978-1-4899-3791-9_2
  • Vodop'yanov, S. K. Thin sets in weighted potential theory and degenerate elliptic equations, Siberian Mathematical Journal, Volume 36 (1995) no. 1, p. 24 | DOI:10.1007/bf02113916
  • Kilpeläinen, Tero; Malý, Jan The Wiener test and potential estimates for quasilinear elliptic equations, Acta Mathematica, Volume 172 (1994) no. 1, p. 137 | DOI:10.1007/bf02392793
  • Adams, D. R. Nonlinear PDE and the Wiener Test, Classical and Modern Potential Theory and Applications (1994), p. 1 | DOI:10.1007/978-94-011-1138-6_1
  • Tarkhanov, Nikolai N. General aspects of potential theory with respect to problems of differential equations, Complex Potential Theory (1994), p. 365 | DOI:10.1007/978-94-011-0934-5_9
  • Verdera, Joan Removability, capacity and approximation, Complex Potential Theory (1994), p. 419 | DOI:10.1007/978-94-011-0934-5_10
  • Kilpeläinen, Tero Nonlinear Potential Theory and PDEs, ICPT ’91 (1994), p. 107 | DOI:10.1007/978-94-011-1118-8_6
  • Kilpel�inen, Tero Nonlinear potential theory and PDEs, Potential Analysis, Volume 3 (1994) no. 1, p. 107 | DOI:10.1007/bf01047838
  • Lindqvist, Peter On Non-Linear Rayleigh quotients, Potential Analysis, Volume 2 (1993) no. 3, p. 199 | DOI:10.1007/bf01048505
  • Pérez, C. On a theorem of Muckenhoupt and Wheeden and a weighted inequality related to Schrödinger operators, Transactions of the American Mathematical Society, Volume 340 (1993) no. 2, p. 549 | DOI:10.1090/s0002-9947-1993-1072105-7
  • Vodop'yanov, S. K. Weighted Lp-potential theory on homogeneous groups, Siberian Mathematical Journal, Volume 33 (1992) no. 2, p. 201 | DOI:10.1007/bf00971091
  • Boccardo, L.; Giachetti, D.; Murat, F. A generalization of a theorem of H. Brezis F. E. Browder and applications to some unilateral problems, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 7 (1990) no. 4, p. 367 | DOI:10.1016/s0294-1449(16)30297-9
  • Aikawa, Hiroaki Comparison of LP- capacity and hausdorff measure, Complex Variables, Theory and Application: An International Journal, Volume 15 (1990) no. 3, p. 223 | DOI:10.1080/17476939008814453
  • Hazewinkel, M. N, Encyclopaedia of Mathematics (1990), p. 361 | DOI:10.1007/978-94-009-5991-0_3
  • Rakotoson, J.Michel Equivalence between the growth of ∫B(x,r) ¦▽u¦p dy and T in the equation P[u] = T, Journal of Differential Equations, Volume 86 (1990) no. 1, p. 102 | DOI:10.1016/0022-0396(90)90043-o
  • Rakotoson, J.-M.; Ziemer, William P. Local behavior of solutions of quasilinear elliptic equations with general structure, Transactions of the American Mathematical Society, Volume 319 (1990) no. 2, p. 747 | DOI:10.1090/s0002-9947-1990-0998128-9
  • Lewis, John. L Some applications of riesz capacities, Complex Variables, Theory and Application: An International Journal, Volume 12 (1989) no. 1-4, p. 237 | DOI:10.1080/17476938908814368
  • Hamann, Uwe Approximation durch Lösungen elliptischer Randwertprobleme auf kompakten Mengen mit leerem Innern, Mathematische Nachrichten, Volume 143 (1989) no. 1, p. 143 | DOI:10.1002/mana.19891430113
  • Heinonen, J.; Kilpeläinen, T. A-superharmonic functions and supersolutions of degenerate elliptic equations, Arkiv för Matematik, Volume 26 (1988) no. 1-2, p. 87 | DOI:10.1007/bf02386110
  • Bagby, Thomas; Gauthier, P. M. Approximation by harmonic functions on closed subsets of Riemann surfaces, Journal d'Analyse Mathématique, Volume 51 (1988) no. 1, p. 259 | DOI:10.1007/bf02791126
  • Dal Maso, Gianni; Defranceschi, Anneliese Some properties of a class of nonlinear variational μ-capacities, Journal of Functional Analysis, Volume 79 (1988) no. 2, p. 476 | DOI:10.1016/0022-1236(88)90022-5
  • Kilpeläinen, T. Polar Sets in a Nonlinear Potential Theory, Potential Theory (1988), p. 169 | DOI:10.1007/978-1-4613-0981-9_22
  • Wildenhain, G. Potential theory methods for higher order elliptic equations, Potential Theory Surveys and Problems, Volume 1344 (1988), p. 181 | DOI:10.1007/bfb0103351
  • Heinonen, Juha; Kilpeläinen, Tero On the Wiener criterion and quasilinear obstacle problems, Transactions of the American Mathematical Society, Volume 310 (1988) no. 1, p. 239 | DOI:10.1090/s0002-9947-1988-0965751-8
  • Michael, J.H.; Ziemer, William P. The Wiener criterion and quasilinear uniformly elliptic equations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 4 (1987) no. 5, p. 453 | DOI:10.1016/s0294-1449(16)30359-6
  • Lewis, John L. Approximations of sobolev functions and related topics, Complex Analysis I, Volume 1275 (1987), p. 223 | DOI:10.1007/bfb0078355
  • Hatano, Kaoru Bessel capacity of symmetric generalized Cantor sets, Hiroshima Mathematical Journal, Volume 17 (1987) no. 1 | DOI:10.32917/hmj/1206130195
  • Marschall, J�rgen The trace of Sobolev-Slobodeckij spaces on Lipschitz domains, Manuscripta Mathematica, Volume 58 (1987) no. 1-2, p. 47 | DOI:10.1007/bf01169082
  • Kolsrud, Torbjörn On the Markov property for certain Gaussian random fields, Probability Theory and Related Fields, Volume 74 (1987) no. 3, p. 393 | DOI:10.1007/bf00699097
  • Hamann, Uwe Approximation durch Normalableitungen von Lösungen elliptischer Randwertprobleme in beliebigen Sobolev‐Räumen, Mathematische Nachrichten, Volume 128 (1986) no. 1, p. 199 | DOI:10.1002/mana.19861280117
  • Adams, David R. Weighted nonlinear potential theory, Transactions of the American Mathematical Society, Volume 297 (1986) no. 1, p. 73 | DOI:10.1090/s0002-9947-1986-0849468-4
  • Weighted polynomial approximation, quasianalyticity and analytic continuation., Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 1985 (1985) no. 357, p. 23 | DOI:10.1515/crll.1985.357.23

Cité par 149 documents. Sources : Crossref