Il existe une infinité d’entiers
There exist infinitely many integers
@article{AIF_1982__32_4_1_0, author = {Deshouillers, Jean-Marc and Iwaniec, Henryk}, title = {On the greatest prime factor of $n^2+1$}, journal = {Annales de l'Institut Fourier}, pages = {1--11}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {4}, year = {1982}, doi = {10.5802/aif.891}, mrnumber = {84m:10033}, zbl = {0489.10038}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.891/} }
TY - JOUR AU - Deshouillers, Jean-Marc AU - Iwaniec, Henryk TI - On the greatest prime factor of $n^2+1$ JO - Annales de l'Institut Fourier PY - 1982 SP - 1 EP - 11 VL - 32 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.891/ DO - 10.5802/aif.891 LA - en ID - AIF_1982__32_4_1_0 ER -
Deshouillers, Jean-Marc; Iwaniec, Henryk. On the greatest prime factor of $n^2+1$. Annales de l'Institut Fourier, Tome 32 (1982) no. 4, pp. 1-11. doi : 10.5802/aif.891. https://www.numdam.org/articles/10.5802/aif.891/
[1] Kloosterman sums and Fourier coefficients of cusp forms, Inv. Math. (to appear). | Zbl
and ,[2] On the greatest prime factor of a quadratic polynomial, Acta Math., 117 (1967), 281-299. | MR | Zbl
,[3] Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, London, 1976. | Zbl
,[4] Rosser's sieve, Acta Arith., 36 (1980), 171-202. | Zbl
,[5] Report on the theory of numbers, Collected Mathematical Papers, vol. I, reprinted, Chelsea, 1965.
,- Two problems on the greatest prime factor of
, Acta Arithmetica, Volume 213 (2024) no. 3, pp. 273-287 | DOI:10.4064/aa230710-18-12 | Zbl:1548.11123 - Higher-degree Artin conjecture, The Quarterly Journal of Mathematics, Volume 75 (2024) no. 2, p. 521 | DOI:10.1093/qmath/haae012
- On the largest prime factor of
, Journal of the European Mathematical Society (JEMS), Volume 25 (2023) no. 4, pp. 1253-1284 | DOI:10.4171/jems/1216 | Zbl:1521.11056 - The arithmetic Kuznetsov formula on
. II: The general case, Algebra Number Theory, Volume 16 (2022) no. 3, pp. 567-646 | DOI:10.2140/ant.2022.16.567 | Zbl:1535.11080 - A divisor problem for polynomials, Acta Arithmetica, Volume 200 (2021) no. 2, pp. 111-118 | DOI:10.4064/aa200528-21-4 | Zbl:1486.11042
- Arithmetic exponent pairs for algebraic trace functions and applications, Algebra Number Theory, Volume 15 (2021) no. 9, pp. 2123-2172 | DOI:10.2140/ant.2021.15.2123 | Zbl:1496.11109
- The relative trace formula in analytic number theory, Relative trace formulas. Proceedings of the Simons symposium, Schloss Elmau, Germany, April 22–28, 2018, Cham: Springer, 2021, pp. 51-73 | DOI:10.1007/978-3-030-68506-5_2 | Zbl:1483.11101
- Level of distribution of quadratic polynomials and an upper bound sieve for friable integers, Journal of the European Mathematical Society (JEMS), Volume 22 (2020) no. 5, pp. 1577-1624 | DOI:10.4171/jems/951 | Zbl:1458.11138
- The distribution of divisors of polynomials, Mathematika, Volume 66 (2020) no. 2, pp. 395-415 | DOI:10.1112/mtk.12033 | Zbl:1453.11122
- Quadratic polynomials at prime arguments, Mathematische Zeitschrift, Volume 285 (2017) no. 1-2, pp. 631-646 | DOI:10.1007/s00209-016-1737-3 | Zbl:1365.11109
- Chebyshev's problem for the twelfth cyclotomic polynomial, Proceedings of the London Mathematical Society. Third Series, Volume 111 (2015) no. 1, pp. 1-62 | DOI:10.1112/plms/pdv001 | Zbl:1323.11069
- Arithmetic functions monotonic at consecutive arguments, Studia Scientiarum Mathematicarum Hungarica, Volume 51 (2014) no. 2, p. 155 | DOI:10.1556/sscmath.51.2014.2.1272
- Non-split sums of coefficients of
-automorphic forms, Israel Journal of Mathematics, Volume 195 (2013), pp. 677-723 | DOI:10.1007/s11856-012-0112-2 | Zbl:1334.11035 - The Twenties, Rational Number Theory in the 20th Century (2012), p. 131 | DOI:10.1007/978-0-85729-532-3_3
- On primes in quadratic progressions, International Journal of Number Theory, Volume 5 (2009) no. 6, pp. 1017-1035 | DOI:10.1142/s1793042109002523 | Zbl:1221.11197
- Landau's problems on primes, Journal de Théorie des Nombres de Bordeaux, Volume 21 (2009) no. 2, pp. 357-404 | DOI:10.5802/jtnb.676 | Zbl:1239.11101
- Numbers in a given set with (or without) a large prime factor, The Ramanujan Journal, Volume 20 (2009) no. 3, pp. 275-295 | DOI:10.1007/s11139-009-9179-8 | Zbl:1213.11173
- On values of
free of large prime factors, Archiv der Mathematik, Volume 90 (2008) no. 3, pp. 239-245 | DOI:10.1007/s00013-007-2404-z | Zbl:1216.11085 - Integers of the form
without large prime factors, Acta Mathematica Hungarica, Volume 72 (1996) no. 1-2, pp. 1-34 | DOI:10.1007/bf00053694 | Zbl:0860.11053 - Integers without large prime factors, Journal de Théorie des Nombres de Bordeaux, Volume 5 (1993) no. 2, pp. 411-484 | DOI:10.5802/jtnb.101 | Zbl:0797.11070
- On the greatest prime divisor of quadratic sequences, Séminaire de Théorie des Nombres de Bordeaux. Deuxième Série, Volume 3 (1991) no. 2, pp. 361-375 | DOI:10.5802/jtnb.56 | Zbl:0762.11030
- On the location of the roots of polynomial congruences, Glasgow Mathematical Journal, Volume 32 (1990) no. 3, pp. 309-316 | DOI:10.1017/s0017089500009393 | Zbl:0715.11033
- Kloosterman sums and Fourier coefficients of cusp forms, Inventiones Mathematicae, Volume 70 (1982), pp. 219-288 | DOI:10.1007/bf01390728 | Zbl:0502.10021
Cité par 23 documents. Sources : Crossref, zbMATH