On démontre que l’intervalle
For any sufficiently large real number
@article{AIF_1981__31_4_37_0, author = {Iwaniec, Henryk and Laborde, M.}, title = {$P_2$ in short intervals}, journal = {Annales de l'Institut Fourier}, pages = {37--56}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {4}, year = {1981}, doi = {10.5802/aif.848}, mrnumber = {83e:10061}, zbl = {0472.10048}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.848/} }
TY - JOUR AU - Iwaniec, Henryk AU - Laborde, M. TI - $P_2$ in short intervals JO - Annales de l'Institut Fourier PY - 1981 SP - 37 EP - 56 VL - 31 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.848/ DO - 10.5802/aif.848 LA - en ID - AIF_1981__31_4_37_0 ER -
Iwaniec, Henryk; Laborde, M. $P_2$ in short intervals. Annales de l'Institut Fourier, Tome 31 (1981) no. 4, pp. 37-56. doi : 10.5802/aif.848. http://www.numdam.org/articles/10.5802/aif.848/
[1] Combinatorial strengthening of the sieve method of Eratosthenes (Russian), Uspehi Math. Nauk., 22 (1967), n° 3 (135), 199-226. | Zbl
,[2] On the distribution of almost primes in an interval, Scientia Sinica, 18 (1975), 611-627. | MR | Zbl
,[3] On the distribution of almost primes in an interval (II), Scientia Sinica, 22 (1979), 253-275. | MR | Zbl
,[4] Sieve Methods, London 1974. | MR | Zbl
and ,[5] Almost-primes in short intervals, to appear. | Zbl
, and ,[6] A new form of the error term in the linear sieve, Acta Arith., 27 (1980), 307-320. | MR | Zbl
,[7] An improvement of Selberg sieve method, I, Acta Arith., 11 (1965), 217-240. | MR | Zbl
and ,[8] Les sommes trigonométriques de Chen et les poids de Buchstab en théorie du crible, Thèse de 3e cycle, Université de Paris-Sud.
,[9] Buchstab's sifting weights, Mathematika, 26 (1979), 250-257. | MR | Zbl
,[10] Van der Corput's method and the theory of exponent pairs, Quart. J. Oxford, (2) 6 (1955), 147-153. | MR | Zbl
,[11] Selberg's sieve with weights, Mathematika, 16 (1969), 1-22. | MR | Zbl
,[12] The theory of the Riemann Zeta-Function, Oxford 1951. | MR | Zbl
,- On the least almost-prime in arithmetic progressions., Czechoslovak Mathematical Journal, Volume 74 (2024) no. 2, pp. 535-548 | DOI:10.21136/cmj.2024.0459-23 | Zbl:7893397
- The Last Period, Rational Number Theory in the 20th Century (2012), p. 307 | DOI:10.1007/978-0-85729-532-3_6
- Almost primes in short intervals, Science China. Mathematics, Volume 53 (2010) no. 9, pp. 2511-2524 | DOI:10.1007/s11425-010-4039-y | Zbl:1221.11196
- Numbers in a given set with (or without) a large prime factor, The Ramanujan Journal, Volume 20 (2009) no. 3, pp. 275-295 | DOI:10.1007/s11139-009-9179-8 | Zbl:1213.11173
-
-free numbers in short arithmetic progressions, Journal of Number Theory, Volume 113 (2005) no. 2, pp. 226-243 | DOI:10.1016/j.jnt.2004.10.003 | Zbl:1138.11339 - Prime Numbers, Unsolved Problems in Number Theory, Volume 1 (2004), p. 3 | DOI:10.1007/978-0-387-26677-0_2
- Ternary problems in additive prime number theory, Analytic number theory. Proceedings of the 1st China-Japan seminar on number theory, Beijing, China, September 13–17, 1999 and the annual conference on analytic number theory, Kyoto, Japan, November 29–December 3, 1999, Dordrecht: Kluwer Academic Publishers, 2002, pp. 39-91 | Zbl:1028.11062
- Sparsely totient numbers, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 5 (1996) no. 2, pp. 183-190 | DOI:10.5802/afst.826 | Zbl:0871.11060
- The sequence
and its subsequences, Rocky Mountain Journal of Mathematics, Volume 26 (1996) no. 3, pp. 795-814 | DOI:10.1216/rmjm/1181072023 | Zbl:0881.11060 - A special triple exponential sum, Mathematika, Volume 42 (1995) no. 1, pp. 137-143 | DOI:10.1112/s0025579300011414 | Zbl:0829.11042
- Prime Numbers, Unsolved Problems in Number Theory, Volume 1 (1994), p. 3 | DOI:10.1007/978-1-4899-3585-4_2
- P 2 Dans Les Petits Intervalles, Séminaire de Théorie des Nombres, Paris, 1989–90, Volume 102 (1992), p. 233 | DOI:10.1007/978-1-4757-4269-5_16
-
dans les petits intervalles. ( in short intervals), Séminaire de théorie des nombres, Paris, France, 1989-90, Boston, MA etc.: Birkhäuser, 1992, pp. 233-267 | Zbl:0743.11050 - Nombres presque premiers dans les petits intervalles, Analytic Number Theory, Volume 1434 (1990), p. 65 | DOI:10.1007/bfb0097125
- Bilinear forms of remainder terms in short intervals, Acta Mathematica Sinica, Volume 32 (1989) no. 1, pp. 86-90 | Zbl:0662.10032
- Exponential sums with monomials, Journal of Number Theory, Volume 33 (1989) no. 3, pp. 311-333 | DOI:10.1016/0022-314x(89)90067-x | Zbl:0687.10028
- On a problem of Erdős and Szemerédi, Journal of Number Theory, Volume 22 (1986), pp. 280-288 | DOI:10.1016/0022-314x(86)90012-0 | Zbl:0578.10057
- A weighted sieve of Greaves' type. II, Elementary and analytic theory of numbers, Banach Cent. Publ. 17, 183-215, 1985 | Zbl:0592.10041
- Obere Abschätzung für die Anzahl der B-Zwillinge auf kurzen Intervallen, Mathematische Zeitschrift, Volume 189 (1985), pp. 561-570 | DOI:10.1007/bf01168160 | Zbl:0545.10029
- Weighted sieves, Journees arithmetiques, Orsay 1982, Publ. Math. Orsay 83.04, 97-114, 1983 | Zbl:0514.10037
Cité par 20 documents. Sources : Crossref, zbMATH