Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques
Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 169-223.

Dans cet article nous généralisons les résultats obtenus par J. Chazarain sur le spectre d’opérateurs de Schrödinger P(h)=h22Δ+V lorsque h0. Nous étendons ses résultats aux opérateurs pseudo-différentiels globalement elliptiques d’ordre m>0.

In this article we extend results obtained by J. Chazarain about the spectrum of Schrödinger operators: P(h)=h22Δ+V when h>0 approach 0. We obtain the same results for globally elliptic pseudodifferential operators of order m>0.

@article{AIF_1981__31_3_169_0,
     author = {Robert, Didier and Helffer, Bernard},
     title = {Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques},
     journal = {Annales de l'Institut Fourier},
     pages = {169--223},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {3},
     year = {1981},
     doi = {10.5802/aif.844},
     mrnumber = {83b:58072},
     zbl = {0451.35022},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.844/}
}
TY  - JOUR
AU  - Robert, Didier
AU  - Helffer, Bernard
TI  - Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 169
EP  - 223
VL  - 31
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.844/
DO  - 10.5802/aif.844
LA  - fr
ID  - AIF_1981__31_3_169_0
ER  - 
%0 Journal Article
%A Robert, Didier
%A Helffer, Bernard
%T Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques
%J Annales de l'Institut Fourier
%D 1981
%P 169-223
%V 31
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.844/
%R 10.5802/aif.844
%G fr
%F AIF_1981__31_3_169_0
Robert, Didier; Helffer, Bernard. Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 169-223. doi : 10.5802/aif.844. https://www.numdam.org/articles/10.5802/aif.844/

[1] K. Asada and D. Fujiwara, On some oscillatory integral transformation in L2(Rn), Japan J. Math., 4 (1978), 299-361. | MR | Zbl

[2] R. Beals, A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42. | MR | Zbl

[3] M.V. Berry and K.E. Mount, Semi-classical approximations in wave mechanics, Rep. Prog. Phys., 35 (1972), 315-397.

[4] J. Chazarain, Spectre d'un hamiltonien quantique et mécanique classique, Comm. in Partial diff. Equat., n° 6 (1980), 595-644. | MR | Zbl

[5] Y. Colin De Verdiere, Spectre joint d'opérateurs pseudodifférentiels qui commutent. I - Le cas non intégrable, Duke Math. J., 46 (1979), 169-182. | MR | Zbl

[6] J.J. Duistermaat, Oscillatory integrals..., Comm. Pure Appl. Math., 27 (1974), 207-281. | Zbl

[7] J.J. Duistermaat and V. Guillemin, Spectrum of elliptic operators and periodic geodesics, Inv. Math., 29 (1975), 39-79. | MR | Zbl

[8] B. Grammaticos and A. Voros, Semi-classical approximations of nuclear hamiltonians, I - Spin-independant potentials, Annals of physics, 123 (1979), 359-380.

[9] V. Guillemin and S. Sternberg, Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math., 101 (1979), 915-955. | MR | Zbl

[10] L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. | MR | Zbl

[11] L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (1979), 359-443. | MR | Zbl

[12] L. Hormander, On the asymptotic distribution of eigenvalues of pseudodifferential operators in Rn, Arkiv för Math., 17 n° 2 (1979), 296-313. | MR | Zbl

[13] J. Leray, Analyse lagrangienne et mécanique quantique, Collège de France (1976-1977). | EuDML

[14] V.P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972), traduction. | Zbl

[15] A. Messiah, Mécanique quantique t. 1, Dunod, Paris (1962).

[16] D. Robert, Propriétés spectrales d'opérateurs pseudodifferentiels, Comm. in Partial diff. Equat., 3 (1978), 755-826. | MR | Zbl

[17] M.A. Subin, Pseudodifferential operators and spectral theory, Nauka Moskva, 1978. | Zbl

[18] V.N. Tulovskii and M.A. Subin, On the asymptotic distribution of eigen values of pseudodifferential operators in Rn, Math. USSR Sbornik, 21 (1973), 565-583. | MR | Zbl

[19] A. Voros, An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. of Funct. Analysis, 29 n° 1 (1978), 104-132. | MR | Zbl

  • Kammerer, Clotilde Fermanian; Le Rousseau, Jérôme Semi-Classical Analysis, Encyclopedia of Mathematical Physics (2025), p. 47 | DOI:10.1016/b978-0-323-95703-8.00080-x
  • Vogel, Martin Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit, Frontiers in Applied Mathematics and Statistics, Volume 10 (2024) | DOI:10.3389/fams.2024.1508973
  • Aid, Omar Farouk; Harrat, Chahrazed; Senoussaoui, Abderrahmane The continuity of h-admissible operators on Triebel–Lizorkin spaces, The Journal of Analysis (2024) | DOI:10.1007/s41478-024-00860-y
  • Simon, Barry Twelve tales in mathematical physics: An expanded Heineman prize lecture, Journal of Mathematical Physics, Volume 63 (2022) no. 2 | DOI:10.1063/5.0056008
  • Delgado, Julio; Ruzhansky, Michael Schatten-von Neumann classes of integral operators, Journal de Mathématiques Pures et Appliquées, Volume 154 (2021), p. 1 | DOI:10.1016/j.matpur.2021.08.006
  • Yang, Jie; Sun, Wenchang On L 2 -Boundedness of h -Pseudodifferential Operators, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/6690963
  • Lewin, Mathieu; Sabin, Julien The Hartree and Vlasov equations at positive density, Communications in Partial Differential Equations, Volume 45 (2020) no. 12, p. 1702 | DOI:10.1080/03605302.2020.1803355
  • Aarab, Ilias; Tagmouti, Mohamed Ali Harmonic oscillator perturbed by a decreasing scalar potential, Journal of Pseudo-Differential Operators and Applications, Volume 11 (2020) no. 1, p. 141 | DOI:10.1007/s11868-019-00284-4
  • Weich, Tobias Equivariant spectral asymptotics for h-pseudodifferential operators, Journal of Mathematical Physics, Volume 55 (2014) no. 10 | DOI:10.1063/1.4896698
  • Parmeggiani, Alberto On the Spectrum of Certain Non-Commutative Harmonic Oscillators and Semiclassical Analysis, Communications in Mathematical Physics, Volume 279 (2008) no. 2, p. 285 | DOI:10.1007/s00220-008-0436-2
  • Zielinski, Lech Sharp semiclassical estimates for the number of eigenvalues below a totally degenerate critical level, Journal of Functional Analysis, Volume 248 (2007) no. 2, p. 259 | DOI:10.1016/j.jfa.2007.03.030
  • Zielinski, Lech Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators, Mathematical Physics, Analysis and Geometry, Volume 9 (2006) no. 1, p. 1 | DOI:10.1007/s11040-005-3896-z
  • Camus, Brice Contributions of non-extremum critical points to the semi-classical trace formula, Journal of Functional Analysis, Volume 217 (2004) no. 1, p. 79 | DOI:10.1016/j.jfa.2004.02.003
  • Zielinski, Lech Semiclassical Weyl Formula for Elliptic Operators with Non-Smooth Coefficients, Recent Advances in Operator Theory, Operator Algebras, and their Applications (2004), p. 321 | DOI:10.1007/3-7643-7314-8_21
  • Sjöstrand, Johannes Microlocal Analysis, Development of Mathematics, 1950–2000 (2000), p. 967 | DOI:10.1007/978-3-0348-8968-1_33
  • Bruneau, Vincent; Robert, Didier Asymptotics of the scattering phase for the Dirac operator: High energy, semi-classical and non-relativistic limits, Arkiv för Matematik, Volume 37 (1999) no. 1, p. 1 | DOI:10.1007/bf02384826
  • Charbonnel, Anne-Marie; Popov, Georgi A semi-classical trace formula for several commuting operators, Communications in Partial Differential Equations, Volume 24 (1999) no. 1-2, p. 283 | DOI:10.1080/03605309908821423
  • Bruneau, Vincent Semi-classical behaviour of the scattering phase for trapping perturbations of the laplacian, Communications in Partial Differential Equations, Volume 24 (1999) no. 5-6, p. 1230 | DOI:10.1080/03605309908821460
  • Helffer, Bernard h-Pseudodifferential Operators and Applications: An Introduction, Quasiclassical Methods, Volume 95 (1997), p. 1 | DOI:10.1007/978-1-4612-1940-8_1
  • Yves Colin de Verdière; Bernard Parisse Équilibre instable en régime semi-classique: i—concentration microlocale, Communications in Partial Differential Equations, Volume 19 (1994) no. 9-10, p. 1535 | DOI:10.1080/03605309408821063
  • Taylor, Michael E; Uribe, Alejandro Semiclassical spectra of gauge fields, Journal of Functional Analysis, Volume 110 (1992) no. 1, p. 1 | DOI:10.1016/0022-1236(92)90041-g
  • Boimatov, K. Kh. Quasiclassical asymptotics of eigenvalues op elliptic systems of differential operators on compact manifolds, Mathematical Notes, Volume 51 (1992) no. 2, p. 210 | DOI:10.1007/bf02102132
  • Graffi, S.; Parmeggiani, A. Quantum evolution and classical flow in complex phase space, Communications in Mathematical Physics, Volume 128 (1990) no. 2, p. 393 | DOI:10.1007/bf02108786
  • Schrader, Robert; Taylor, Michael E Semiclassical asymptotics, gauge fields, and quantum chaos, Journal of Functional Analysis, Volume 83 (1989) no. 2, p. 258 | DOI:10.1016/0022-1236(89)90021-9
  • Wang, Xue-Ping Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators, Journal of Differential Equations, Volume 71 (1988) no. 2, p. 348 | DOI:10.1016/0022-0396(88)90032-0
  • Robert, D; Tamura, H Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, Journal of Functional Analysis, Volume 80 (1988) no. 1, p. 124 | DOI:10.1016/0022-1236(88)90069-9
  • Helffer, B; Nourrigat, J Remarques sur le principe d'incertitude, Journal of Functional Analysis, Volume 80 (1988) no. 1, p. 33 | DOI:10.1016/0022-1236(88)90063-8
  • Duistermaat, J. J. The Quantum Spherical Pendulum, Quantum Theories and Geometry (1988), p. 53 | DOI:10.1007/978-94-009-3055-1_3
  • Karadzhov, G. E. Semi-Classical Asymptotic of Spectral Function for Someh-Admissible Operators, Mathematische Nachrichten, Volume 132 (1987) no. 1, p. 329 | DOI:10.1002/mana.19871320122
  • Levendorskii, S. Z. The approximate spectral projection method, Acta Applicandae Mathematicae, Volume 7 (1986) no. 2, p. 137 | DOI:10.1007/bf00051349
  • Karadzhov, G. E. Semi‐Classical Asymptotic of Spectral Function for Some Schrödinger Operators, Mathematische Nachrichten, Volume 128 (1986) no. 1, p. 103 | DOI:10.1002/mana.19861280109
  • Albeverio, Sergio; Arede, Teresa The Relation Between Quantum Mechanics And Classical Mechanics: A Survey Of Some Mathematical Aspects, Chaotic Behavior in Quantum Systems, Volume 120 (1985), p. 37 | DOI:10.1007/978-1-4613-2443-0_3
  • Robert, D.; Tamura, H. Semi-classical bounds for resolvents of schrödinger operators and asymptotics for scattering phases, Communications in Partial Differential Equations, Volume 9 (1984) no. 10, p. 1017 | DOI:10.1080/03605308408820355
  • Helffer, B.; Sjostrand, J. Multiple wells in the semi-classical limit I, Communications in Partial Differential Equations, Volume 9 (1984) no. 4, p. 337 | DOI:10.1080/03605308408820335
  • Helffer, B; Robert, D Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, Journal of Functional Analysis, Volume 53 (1983) no. 3, p. 246 | DOI:10.1016/0022-1236(83)90034-4
  • Robert, Didier Remarks on a paper of S. Zelditch: “Szegö limit theorems in quantum mechanics”, Journal of Functional Analysis, Volume 53 (1983) no. 3, p. 304 | DOI:10.1016/0022-1236(83)90037-x

Cité par 36 documents. Sources : Crossref