Dans cet article nous généralisons les résultats obtenus par J. Chazarain sur le spectre d’opérateurs de Schrödinger
In this article we extend results obtained by J. Chazarain about the spectrum of Schrödinger operators:
@article{AIF_1981__31_3_169_0, author = {Robert, Didier and Helffer, Bernard}, title = {Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques}, journal = {Annales de l'Institut Fourier}, pages = {169--223}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {3}, year = {1981}, doi = {10.5802/aif.844}, mrnumber = {83b:58072}, zbl = {0451.35022}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.844/} }
TY - JOUR AU - Robert, Didier AU - Helffer, Bernard TI - Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques JO - Annales de l'Institut Fourier PY - 1981 SP - 169 EP - 223 VL - 31 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.844/ DO - 10.5802/aif.844 LA - fr ID - AIF_1981__31_3_169_0 ER -
%0 Journal Article %A Robert, Didier %A Helffer, Bernard %T Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques %J Annales de l'Institut Fourier %D 1981 %P 169-223 %V 31 %N 3 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.844/ %R 10.5802/aif.844 %G fr %F AIF_1981__31_3_169_0
Robert, Didier; Helffer, Bernard. Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 169-223. doi : 10.5802/aif.844. https://www.numdam.org/articles/10.5802/aif.844/
[1] On some oscillatory integral transformation in L2(Rn), Japan J. Math., 4 (1978), 299-361. | MR | Zbl
and ,[2] A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42. | MR | Zbl
,[3] Semi-classical approximations in wave mechanics, Rep. Prog. Phys., 35 (1972), 315-397.
and ,[4] Spectre d'un hamiltonien quantique et mécanique classique, Comm. in Partial diff. Equat., n° 6 (1980), 595-644. | MR | Zbl
,[5] Spectre joint d'opérateurs pseudodifférentiels qui commutent. I - Le cas non intégrable, Duke Math. J., 46 (1979), 169-182. | MR | Zbl
,[6] Oscillatory integrals..., Comm. Pure Appl. Math., 27 (1974), 207-281. | Zbl
,[7] Spectrum of elliptic operators and periodic geodesics, Inv. Math., 29 (1975), 39-79. | MR | Zbl
and ,[8] Semi-classical approximations of nuclear hamiltonians, I - Spin-independant potentials, Annals of physics, 123 (1979), 359-380.
and ,[9] Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math., 101 (1979), 915-955. | MR | Zbl
and ,[10] The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. | MR | Zbl
,[11] The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (1979), 359-443. | MR | Zbl
,[12] On the asymptotic distribution of eigenvalues of pseudodifferential operators in Rn, Arkiv för Math., 17 n° 2 (1979), 296-313. | MR | Zbl
,[13] Analyse lagrangienne et mécanique quantique, Collège de France (1976-1977). | EuDML
,[14] Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972), traduction. | Zbl
,[15] Mécanique quantique t. 1, Dunod, Paris (1962).
,[16] Propriétés spectrales d'opérateurs pseudodifferentiels, Comm. in Partial diff. Equat., 3 (1978), 755-826. | MR | Zbl
,[17] Pseudodifferential operators and spectral theory, Nauka Moskva, 1978. | Zbl
,[18] On the asymptotic distribution of eigen values of pseudodifferential operators in Rn, Math. USSR Sbornik, 21 (1973), 565-583. | MR | Zbl
and ,[19] An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. of Funct. Analysis, 29 n° 1 (1978), 104-132. | MR | Zbl
,- Semi-Classical Analysis, Encyclopedia of Mathematical Physics (2025), p. 47 | DOI:10.1016/b978-0-323-95703-8.00080-x
- Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit, Frontiers in Applied Mathematics and Statistics, Volume 10 (2024) | DOI:10.3389/fams.2024.1508973
- The continuity of h-admissible operators on Triebel–Lizorkin spaces, The Journal of Analysis (2024) | DOI:10.1007/s41478-024-00860-y
- Twelve tales in mathematical physics: An expanded Heineman prize lecture, Journal of Mathematical Physics, Volume 63 (2022) no. 2 | DOI:10.1063/5.0056008
- Schatten-von Neumann classes of integral operators, Journal de Mathématiques Pures et Appliquées, Volume 154 (2021), p. 1 | DOI:10.1016/j.matpur.2021.08.006
- On L 2 -Boundedness of h -Pseudodifferential Operators, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/6690963
- The Hartree and Vlasov equations at positive density, Communications in Partial Differential Equations, Volume 45 (2020) no. 12, p. 1702 | DOI:10.1080/03605302.2020.1803355
- Harmonic oscillator perturbed by a decreasing scalar potential, Journal of Pseudo-Differential Operators and Applications, Volume 11 (2020) no. 1, p. 141 | DOI:10.1007/s11868-019-00284-4
- Equivariant spectral asymptotics for h-pseudodifferential operators, Journal of Mathematical Physics, Volume 55 (2014) no. 10 | DOI:10.1063/1.4896698
- On the Spectrum of Certain Non-Commutative Harmonic Oscillators and Semiclassical Analysis, Communications in Mathematical Physics, Volume 279 (2008) no. 2, p. 285 | DOI:10.1007/s00220-008-0436-2
- Sharp semiclassical estimates for the number of eigenvalues below a totally degenerate critical level, Journal of Functional Analysis, Volume 248 (2007) no. 2, p. 259 | DOI:10.1016/j.jfa.2007.03.030
- Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators, Mathematical Physics, Analysis and Geometry, Volume 9 (2006) no. 1, p. 1 | DOI:10.1007/s11040-005-3896-z
- Contributions of non-extremum critical points to the semi-classical trace formula, Journal of Functional Analysis, Volume 217 (2004) no. 1, p. 79 | DOI:10.1016/j.jfa.2004.02.003
- Semiclassical Weyl Formula for Elliptic Operators with Non-Smooth Coefficients, Recent Advances in Operator Theory, Operator Algebras, and their Applications (2004), p. 321 | DOI:10.1007/3-7643-7314-8_21
- Microlocal Analysis, Development of Mathematics, 1950–2000 (2000), p. 967 | DOI:10.1007/978-3-0348-8968-1_33
- Asymptotics of the scattering phase for the Dirac operator: High energy, semi-classical and non-relativistic limits, Arkiv för Matematik, Volume 37 (1999) no. 1, p. 1 | DOI:10.1007/bf02384826
- A semi-classical trace formula for several commuting operators, Communications in Partial Differential Equations, Volume 24 (1999) no. 1-2, p. 283 | DOI:10.1080/03605309908821423
- Semi-classical behaviour of the scattering phase for trapping perturbations of the laplacian, Communications in Partial Differential Equations, Volume 24 (1999) no. 5-6, p. 1230 | DOI:10.1080/03605309908821460
- h-Pseudodifferential Operators and Applications: An Introduction, Quasiclassical Methods, Volume 95 (1997), p. 1 | DOI:10.1007/978-1-4612-1940-8_1
- Équilibre instable en régime semi-classique: i—concentration microlocale, Communications in Partial Differential Equations, Volume 19 (1994) no. 9-10, p. 1535 | DOI:10.1080/03605309408821063
- Semiclassical spectra of gauge fields, Journal of Functional Analysis, Volume 110 (1992) no. 1, p. 1 | DOI:10.1016/0022-1236(92)90041-g
- Quasiclassical asymptotics of eigenvalues op elliptic systems of differential operators on compact manifolds, Mathematical Notes, Volume 51 (1992) no. 2, p. 210 | DOI:10.1007/bf02102132
- Quantum evolution and classical flow in complex phase space, Communications in Mathematical Physics, Volume 128 (1990) no. 2, p. 393 | DOI:10.1007/bf02108786
- Semiclassical asymptotics, gauge fields, and quantum chaos, Journal of Functional Analysis, Volume 83 (1989) no. 2, p. 258 | DOI:10.1016/0022-1236(89)90021-9
- Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators, Journal of Differential Equations, Volume 71 (1988) no. 2, p. 348 | DOI:10.1016/0022-0396(88)90032-0
- Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, Journal of Functional Analysis, Volume 80 (1988) no. 1, p. 124 | DOI:10.1016/0022-1236(88)90069-9
- Remarques sur le principe d'incertitude, Journal of Functional Analysis, Volume 80 (1988) no. 1, p. 33 | DOI:10.1016/0022-1236(88)90063-8
- The Quantum Spherical Pendulum, Quantum Theories and Geometry (1988), p. 53 | DOI:10.1007/978-94-009-3055-1_3
- Semi-Classical Asymptotic of Spectral Function for Someh-Admissible Operators, Mathematische Nachrichten, Volume 132 (1987) no. 1, p. 329 | DOI:10.1002/mana.19871320122
- The approximate spectral projection method, Acta Applicandae Mathematicae, Volume 7 (1986) no. 2, p. 137 | DOI:10.1007/bf00051349
- Semi‐Classical Asymptotic of Spectral Function for Some Schrödinger Operators, Mathematische Nachrichten, Volume 128 (1986) no. 1, p. 103 | DOI:10.1002/mana.19861280109
- The Relation Between Quantum Mechanics And Classical Mechanics: A Survey Of Some Mathematical Aspects, Chaotic Behavior in Quantum Systems, Volume 120 (1985), p. 37 | DOI:10.1007/978-1-4613-2443-0_3
- Semi-classical bounds for resolvents of schrödinger operators and asymptotics for scattering phases, Communications in Partial Differential Equations, Volume 9 (1984) no. 10, p. 1017 | DOI:10.1080/03605308408820355
- Multiple wells in the semi-classical limit I, Communications in Partial Differential Equations, Volume 9 (1984) no. 4, p. 337 | DOI:10.1080/03605308408820335
- Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, Journal of Functional Analysis, Volume 53 (1983) no. 3, p. 246 | DOI:10.1016/0022-1236(83)90034-4
- Remarks on a paper of S. Zelditch: “Szegö limit theorems in quantum mechanics”, Journal of Functional Analysis, Volume 53 (1983) no. 3, p. 304 | DOI:10.1016/0022-1236(83)90037-x
Cité par 36 documents. Sources : Crossref