On démontre l’existence de solutions classiques pour certaines équations elliptiques du deuxième ordre, fortement non linéaires, ayant des coefficients d’ordre zéro assez grands. On utilise essentiellement une estimation a priori impliquant que la norme
We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the
@article{AIF_1981__31_2_175_0, author = {Evans, L. C. and Lions, Pierre-Louis}, title = {Fully nonlinear second order elliptic equations with large zeroth order coefficient}, journal = {Annales de l'Institut Fourier}, pages = {175--191}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {2}, year = {1981}, doi = {10.5802/aif.834}, mrnumber = {82m:35047}, zbl = {0441.35023}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.834/} }
TY - JOUR AU - Evans, L. C. AU - Lions, Pierre-Louis TI - Fully nonlinear second order elliptic equations with large zeroth order coefficient JO - Annales de l'Institut Fourier PY - 1981 SP - 175 EP - 191 VL - 31 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.834/ DO - 10.5802/aif.834 LA - en ID - AIF_1981__31_2_175_0 ER -
%0 Journal Article %A Evans, L. C. %A Lions, Pierre-Louis %T Fully nonlinear second order elliptic equations with large zeroth order coefficient %J Annales de l'Institut Fourier %D 1981 %P 175-191 %V 31 %N 2 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.834/ %R 10.5802/aif.834 %G en %F AIF_1981__31_2_175_0
Evans, L. C.; Lions, Pierre-Louis. Fully nonlinear second order elliptic equations with large zeroth order coefficient. Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 175-191. doi : 10.5802/aif.834. https://www.numdam.org/articles/10.5802/aif.834/
[1] On solving certain nonlinear partial differential equations by accretive operator methods, to appear in Isr. J. Math., (1981). | Zbl
,[2] Stochastic optimal switching and the Dirichlet problem for the Bellman equation, Trans. Am. Math. Soc., 253 (1979), 365-389. | MR | Zbl
and ,[3] Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. | MR | Zbl
,[4] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | Zbl
and ,[5] Résolution des problèmes de Bellman-Dirichlet, to appear in Acta Math., (1981). | MR | Zbl
,[6] Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335-354. | MR | Zbl
,[7] On the topological character of general nonlinear operators, Doklady, 239 (1978), 538-541 (Russian). | MR | Zbl
,- Rate of Convergence for Approximate Solutions in Obstacle Problems for Nonlinear Operators, Mathematical Physics and Its Interactions, Volume 451 (2024), p. 63 | DOI:10.1007/978-981-97-0364-7_3
- Equivalence of Viscosity Solutions between Obstacle and Gradient Constraint Problems, Funkcialaj Ekvacioj, Volume 63 (2020) no. 3, p. 323 | DOI:10.1619/fesi.63.323
- Existence of Solutions for Jacobian and Hessian Equations Under Smallness Assumptions, Numerical Functional Analysis and Optimization, Volume 35 (2014) no. 7-9, p. 868 | DOI:10.1080/01630563.2014.895746
- Regularity of the viscosity solution to nonlinear pde's with large zeroth order coefficient, Communications in Partial Differential Equations, Volume 19 (1994) no. 7-8, p. 1235 | DOI:10.1080/03605309408821053
- Contingent solutions to the center manifold equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 9 (1992) no. 1, p. 13 | DOI:10.1016/s0294-1449(16)30248-7
- Nonlinear nonuniformly elliptic second-order equations, Journal of Soviet Mathematics, Volume 32 (1986) no. 5, p. 448 | DOI:10.1007/bf01372196
- The dirichlet problem for nonlinear second‐order elliptic equations. II. Complex monge‐ampère, and uniformaly elliptic, equations, Communications on Pure and Applied Mathematics, Volume 38 (1985) no. 2, p. 209 | DOI:10.1002/cpa.3160380206
- Integro-differential equations associated with optimal stopping time of a piecewise-deterministic process, Stochastics, Volume 15 (1985) no. 3, p. 183 | DOI:10.1080/17442508508833356
- Classical solutions of fully nonlinear, convex, second‐order elliptic equations, Communications on Pure and Applied Mathematics, Volume 35 (1982) no. 3, p. 333 | DOI:10.1002/cpa.3160350303
Cité par 9 documents. Sources : Crossref