Fully nonlinear second order elliptic equations with large zeroth order coefficient
Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 175-191.

On démontre l’existence de solutions classiques pour certaines équations elliptiques du deuxième ordre, fortement non linéaires, ayant des coefficients d’ordre zéro assez grands. On utilise essentiellement une estimation a priori impliquant que la norme C2,α de la solution ne peut appartenir à un intervalle de la demi-droite réelle positive.

We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the C2,α-norm of the solution cannot lie in a certain interval of the positive real axis.

@article{AIF_1981__31_2_175_0,
     author = {Evans, L. C. and Lions, Pierre-Louis},
     title = {Fully nonlinear second order elliptic equations with large zeroth order coefficient},
     journal = {Annales de l'Institut Fourier},
     pages = {175--191},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {2},
     year = {1981},
     doi = {10.5802/aif.834},
     mrnumber = {82m:35047},
     zbl = {0441.35023},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.834/}
}
TY  - JOUR
AU  - Evans, L. C.
AU  - Lions, Pierre-Louis
TI  - Fully nonlinear second order elliptic equations with large zeroth order coefficient
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 175
EP  - 191
VL  - 31
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.834/
DO  - 10.5802/aif.834
LA  - en
ID  - AIF_1981__31_2_175_0
ER  - 
%0 Journal Article
%A Evans, L. C.
%A Lions, Pierre-Louis
%T Fully nonlinear second order elliptic equations with large zeroth order coefficient
%J Annales de l'Institut Fourier
%D 1981
%P 175-191
%V 31
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.834/
%R 10.5802/aif.834
%G en
%F AIF_1981__31_2_175_0
Evans, L. C.; Lions, Pierre-Louis. Fully nonlinear second order elliptic equations with large zeroth order coefficient. Annales de l'Institut Fourier, Tome 31 (1981) no. 2, pp. 175-191. doi : 10.5802/aif.834. https://www.numdam.org/articles/10.5802/aif.834/

[1] L. C. Evans, On solving certain nonlinear partial differential equations by accretive operator methods, to appear in Isr. J. Math., (1981). | Zbl

[2] L. C. Evans and A. Friedman, Stochastic optimal switching and the Dirichlet problem for the Bellman equation, Trans. Am. Math. Soc., 253 (1979), 365-389. | MR | Zbl

[3] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. | MR | Zbl

[4] O. A. Ladyžewskaja and N. N. Ural'Ceva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | Zbl

[5] P. L. Lions, Résolution des problèmes de Bellman-Dirichlet, to appear in Acta Math., (1981). | MR | Zbl

[6] P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335-354. | MR | Zbl

[7] I. V. Skrypnik, On the topological character of general nonlinear operators, Doklady, 239 (1978), 538-541 (Russian). | MR | Zbl

  • Koike, Shigeaki; Kosugi, Takahiro Rate of Convergence for Approximate Solutions in Obstacle Problems for Nonlinear Operators, Mathematical Physics and Its Interactions, Volume 451 (2024), p. 63 | DOI:10.1007/978-981-97-0364-7_3
  • Kosugi, Takahiro Equivalence of Viscosity Solutions between Obstacle and Gradient Constraint Problems, Funkcialaj Ekvacioj, Volume 63 (2020) no. 3, p. 323 | DOI:10.1619/fesi.63.323
  • Basterrechea, S.; Dacorogna, B. Existence of Solutions for Jacobian and Hessian Equations Under Smallness Assumptions, Numerical Functional Analysis and Optimization, Volume 35 (2014) no. 7-9, p. 868 | DOI:10.1080/01630563.2014.895746
  • Johnston, Clifford A. Regularity of the viscosity solution to nonlinear pde's with large zeroth order coefficient, Communications in Partial Differential Equations, Volume 19 (1994) no. 7-8, p. 1235 | DOI:10.1080/03605309408821053
  • Aubin, Jean-Pierre; Da Prato, Guiseppe Contingent solutions to the center manifold equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 9 (1992) no. 1, p. 13 | DOI:10.1016/s0294-1449(16)30248-7
  • Ivanov, A. V. Nonlinear nonuniformly elliptic second-order equations, Journal of Soviet Mathematics, Volume 32 (1986) no. 5, p. 448 | DOI:10.1007/bf01372196
  • Caffarelli, L.; Kohn, J. J.; Nirenberg, L.; Spruck, J. The dirichlet problem for nonlinear second‐order elliptic equations. II. Complex monge‐ampère, and uniformaly elliptic, equations, Communications on Pure and Applied Mathematics, Volume 38 (1985) no. 2, p. 209 | DOI:10.1002/cpa.3160380206
  • Lenhart, Suzanne; Liaot, Yu-Chung Integro-differential equations associated with optimal stopping time of a piecewise-deterministic process, Stochastics, Volume 15 (1985) no. 3, p. 183 | DOI:10.1080/17442508508833356
  • Evans, Lawrence C. Classical solutions of fully nonlinear, convex, second‐order elliptic equations, Communications on Pure and Applied Mathematics, Volume 35 (1982) no. 3, p. 333 | DOI:10.1002/cpa.3160350303

Cité par 9 documents. Sources : Crossref