Soit
Let
@article{AIF_1981__31_1_157_0, author = {Sj\"ogren, Peter and Sj\"olin, Per}, title = {Littlewood-Paley decompositions and {Fourier} multipliers with singularities on certain sets}, journal = {Annales de l'Institut Fourier}, pages = {157--175}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {1}, year = {1981}, doi = {10.5802/aif.821}, mrnumber = {82g:42014}, zbl = {0437.42011}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.821/} }
TY - JOUR AU - Sjögren, Peter AU - Sjölin, Per TI - Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets JO - Annales de l'Institut Fourier PY - 1981 SP - 157 EP - 175 VL - 31 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.821/ DO - 10.5802/aif.821 LA - en ID - AIF_1981__31_1_157_0 ER -
%0 Journal Article %A Sjögren, Peter %A Sjölin, Per %T Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets %J Annales de l'Institut Fourier %D 1981 %P 157-175 %V 31 %N 1 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.821/ %R 10.5802/aif.821 %G en %F AIF_1981__31_1_157_0
Sjögren, Peter; Sjölin, Per. Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets. Annales de l'Institut Fourier, Tome 31 (1981) no. 1, pp. 157-175. doi : 10.5802/aif.821. https://www.numdam.org/articles/10.5802/aif.821/
[1] A weighted norm inequality for singular integrals, Studia Math., 57 (1976), 97-101. | MR | Zbl
and ,[2] On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Natl. Acad. Sci. USA, 74 (1977), 423-425. | MR | Zbl
and ,[3] A note on Fourier multipliers, Proc. Amer. Math. Soc., 27 (1971), 423-424. | MR | Zbl
,[4] Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255 (1979), 343-362. | MR | Zbl
and ,[5] Differentiation in lacunary directions, Proc. Natl. Acad. Sci. USA, 75 (1978), 1060-1062. | MR | Zbl
, and ,[6] Vector valued inequalities for operators in Lp spaces, Bull. London Math. Soc., 12 (1980), 211-215. | MR | Zbl
,[7] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR | Zbl
,Cité par Sources :