Galois module structure of rings of integers
Annales de l'Institut Fourier, Tome 30 (1980) no. 3, pp. 11-48.

Soit E/F une extension galoisienne de corps de nombres où les diviseurs de (E:F) sont non-ramifiés dans E/Q. On note Γ=Gal(E/F) et 𝒪E l’anneau des entiers de E. Nous considérons 𝒪E comme ZΓ-module et nous démontrons que la quatrième puissance de la classe (localement libre) de 𝒪E est la classe triviale. Afin de démontrer ce résultat, nous utilisons la description de Fröhlich des groupes de classes de modules et son représentant pour la classe des 𝒪E. De plus, nous développons une nouvelle méthode de congruences sur les déterminants pour les algèbres des groupes cycliques et nous démontrons des congruences correspondantes pour les sommes de Gauss.

Let E/F be a Galois extension of number fields with Γ= Gal(E/F) and with property that the divisors of (E:F) are non-ramified in E/Q. We denote the ring of integers of E by 𝒪E and we study 𝒪E as a ZΓ-module. In particular we show that the fourth power of the (locally free) class of 𝒪E is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of E, together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.

@article{AIF_1980__30_3_11_0,
     author = {Taylor, Martin J.},
     title = {Galois module structure of rings of integers},
     journal = {Annales de l'Institut Fourier},
     pages = {11--48},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {30},
     number = {3},
     year = {1980},
     doi = {10.5802/aif.791},
     mrnumber = {82e:12008},
     zbl = {0416.12004},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.791/}
}
TY  - JOUR
AU  - Taylor, Martin J.
TI  - Galois module structure of rings of integers
JO  - Annales de l'Institut Fourier
PY  - 1980
SP  - 11
EP  - 48
VL  - 30
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.791/
DO  - 10.5802/aif.791
LA  - en
ID  - AIF_1980__30_3_11_0
ER  - 
%0 Journal Article
%A Taylor, Martin J.
%T Galois module structure of rings of integers
%J Annales de l'Institut Fourier
%D 1980
%P 11-48
%V 30
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.791/
%R 10.5802/aif.791
%G en
%F AIF_1980__30_3_11_0
Taylor, Martin J. Galois module structure of rings of integers. Annales de l'Institut Fourier, Tome 30 (1980) no. 3, pp. 11-48. doi : 10.5802/aif.791. https://www.numdam.org/articles/10.5802/aif.791/

[1] Ph. Cassou-Nogues, Quelques théorèmes de base normale d'entiers, Ann. Inst. Fourier, 28, 3 (1978), 1-33. | Numdam | Zbl

[2] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular forms in one variable III, Lecture Notes in Mathematics, 349 (1973), 501-597. | MR | Zbl

[3] A. Fröhlich, Arithmetic and Galois module structure for tame extensions, J. reine und angew. Math., 286/287 (1976), 380-440. | MR | Zbl

[4] A. Fröhlich, To appear in the Springer Ergebnisse series.

[5] A. Fröhlich, Galois module structure, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, 1977, London. | Zbl

[6] A. Fröhlich, Locally free modules over arithmetic orders, J. reine angew. Math., 274/5 (1975), 112-124. | MR | Zbl

[7] A. Fröhlich and M.J. Taylor, The arithmetic theory of local Galois Gauss sums for tame characters, to appear in the Philosophical Transactions of the Royal Society. | Zbl

[8] T.Y. Lam, Artin exponents of finite groups, J. Algebra, 9 (1968), 94-119. | MR | Zbl

[9] S. Lang, Algebraic number theory, Addison-Wesley (1970). | MR | Zbl

[10] J. Martinet, Character theory and Artin L-functions, Algebraic Number fields, (Proc. Durham Symposium), Academic Press, (1977), London. | MR | Zbl

[11] E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. reine angew. Math., 167 (1932), 147-152. | JFM | Zbl

[12] J.P. Serre, Corps locaux, Hermann, Paris, 1968.

[13] J.P. Serre, Représentations linéaires des groupes finis, 2nd ed., Hermann, Paris, 1971. | MR | Zbl

[14] J. Tate, Local constants, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, London, 1977.

[15] M.J. Taylor, Galois module structure of relative abelian extensions, J. reine angew. Math., 303/4 (1978), 97-101. | MR | Zbl

[16] M.J. Taylor, On the self-duality of a ring of integers as a Galois module, Inventiones Mathematicae, 46 (1978), 173-177. | MR | Zbl

[17] M.J. Taylor, A logarithmic description of locally free classgroups of finite groups, to appear in the Journal of Algebra.

  • Kuz'min, L. V. Algebraic number fields, Journal of Soviet Mathematics, Volume 38 (1987) no. 3, p. 1930 | DOI:10.1007/bf01093434
  • Taylor, M.J A logarithmic approach to classgroups of integral group rings, Journal of Algebra, Volume 66 (1980) no. 2, p. 321 | DOI:10.1016/0021-8693(80)90092-7

Cité par 2 documents. Sources : Crossref