Dans cet article, les auteurs considèrent les espaces homogènes compacts d’un groupe de Lie
In this paper the authors study compact homogeneous spaces
@article{AIF_1980__30_1_129_0, author = {Zwart, P. B. and Boothby, William M.}, title = {On compact homogeneous symplectic manifolds}, journal = {Annales de l'Institut Fourier}, pages = {129--157}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {1}, year = {1980}, doi = {10.5802/aif.778}, mrnumber = {81g:53040}, zbl = {0417.53028}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.778/} }
TY - JOUR AU - Zwart, P. B. AU - Boothby, William M. TI - On compact homogeneous symplectic manifolds JO - Annales de l'Institut Fourier PY - 1980 SP - 129 EP - 157 VL - 30 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.778/ DO - 10.5802/aif.778 LA - en ID - AIF_1980__30_1_129_0 ER -
%0 Journal Article %A Zwart, P. B. %A Boothby, William M. %T On compact homogeneous symplectic manifolds %J Annales de l'Institut Fourier %D 1980 %P 129-157 %V 30 %N 1 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.778/ %R 10.5802/aif.778 %G en %F AIF_1980__30_1_129_0
Zwart, P. B.; Boothby, William M. On compact homogeneous symplectic manifolds. Annales de l'Institut Fourier, Tome 30 (1980) no. 1, pp. 129-157. doi : 10.5802/aif.778. https://www.numdam.org/articles/10.5802/aif.778/
[1] An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975. | MR | Zbl
,[2] On contact manifolds, Ann. of Math., Vol. 68, No. 3 (1958), 721-734. | MR | Zbl
and ,[3] Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A., Vol. 40 (1954) 1147-1151. | MR | Zbl
,[4] Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., Vol. 72 (1960), 179-188. | MR | Zbl
,[5] Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., Vol. 63 (1948), 85-124. | MR | Zbl
and ,[6] Symplectic homogeneous spaces, Trans. Amer. Soc., 197 (1974), 145-159. | MR | Zbl
,[7] Géométrie Différentiable et Mécanique Analytique, Hermann (Paris) 1969. | Zbl
,[8] Lie Algebras, Wiley-Interscience, New York, 1962. | Zbl
,[9] The structure of Lie Groups, Holden-Day, San Francisco, 1965. | MR | Zbl
,[10] Foundations of Differential Geometry I, II, Interscience, New York, 1963. | Zbl
, and ,[11] Quantization and unitary representation. Lectures in Modern Analysis and Applications III, Lecture Notes in Mathematics, 170, Springer, 1970. | MR | Zbl
,[12] Some Problems on Transformations of Riemannian and Kählerian Manifolds, Princeton, Mimeographed notes.
,[13] Théorème de réductivité sur des algèbres d'automorphismes, Rendiconti di Mathematic, (1-2), Vol. 22 (1963), 197-244. | Zbl
,[14] Sur les espaces homogènes kahlérians d'un groupe de Lie réductif, Nagoya Math. J., 11 (1957), 53-60. | MR | Zbl
,[15] Factor spaces of solvable groups, Ann. of Math., Vol. 60, (1954), 1-27. | MR | Zbl
,[16] On a class of homogeneous spaces, Izvestia Nauk, 13 (1949), 9-32, Amer. Math. Soc. Transl., No. 39 (1951).
,[17] Leçons sur la représentation des groupes, Soc. Math. de France Monographie, Dunod, Paris, 1967. | MR | Zbl
,[18] Structure des systèmes dynamiques, Maîtrises de Mathématiques, Dunod, Paris, 1970. | MR | Zbl
,[19] Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 212 (1975), 113-130. | MR | Zbl
,[20] Lectures on Symplectic Manifolds, NSF-CBMS Regional Conference Monograph No. 29. | Zbl
,[21] Compact homogeneous spaces possessing invariant contact, symplectic, or cosymplectic structures, Ph.D. Thesis, Washington University, St. Louis, MO, 1965.
,- Coadjoint semi-direct orbits and Lagrangian families with respect to Hermitian form, Revista Integración, Volume 41 (2023) no. 1 | DOI:10.18273/revint.v41n1-2023002
- Homogeneous symplectic half-flat 6-manifolds, Annals of Global Analysis and Geometry, Volume 55 (2019) no. 1, p. 1 | DOI:10.1007/s10455-018-9615-3
- Astheno–Kähler and Balanced Structures on Fibrations, International Mathematics Research Notices, Volume 2019 (2019) no. 22, p. 7093 | DOI:10.1093/imrn/rnx337
- Rigidity of Compact Pseudo-Riemannian Homogeneous Spaces for Solvable Lie Groups, International Mathematics Research Notices, Volume 2018 (2018) no. 10, p. 3199 | DOI:10.1093/imrn/rnw320
- A note on
-plectic homogeneous manifolds, Journal of Geometric Mechanics, Volume 7 (2015) no. 3, p. 389 | DOI:10.3934/jgm.2015.7.389 - S, Encyclopaedia of Mathematics (1993), p. 1 | DOI:10.1007/978-94-015-1233-6_1
- Almost Hermitian homogeneous structures, Proceedings of the Edinburgh Mathematical Society, Volume 31 (1988) no. 3, p. 375 | DOI:10.1017/s0013091500006775
- Dynamical Realizations of Homogeneous Hamiltonian Systems, SIAM Journal on Control and Optimization, Volume 24 (1986) no. 3, p. 374 | DOI:10.1137/0324022
- Symplectic manifolds with no kahler structure, Topology, Volume 25 (1986) no. 3, p. 375 | DOI:10.1016/0040-9383(86)90050-9
Cité par 9 documents. Sources : Crossref