Soit une représentation unitaire continue d’un groupe localement compact sur l’espace de Hilbert . Soit la algèbre engendrée par
On obtient le théorème 1 :
Si est -compact et , alors le support de est discret et chaque dans sup est CCR.
Nous utilisons ce résultat dans le cas de la représentation quasi-régulière . Cela nous permet d’obtenir, entre autres résultats, que impliquerait dans plusieurs cas que est compact.
Let be a continuous unitary representation of the locally compact group on the Hilbert space . Let be the algebra generated by
The main result obtained in this paper is Theorem 1:
If is -compact and then supp is discrete and each in supp in CCR.
We apply this theorem to the quasiregular representation and obtain among other results that implies in many cases that is a compact coset space.
@article{AIF_1979__29_4_37_0, author = {Granirer, Edmond E.}, title = {On group representations whose $C^*$ algebra is an ideal in its von {Neumann} algebra}, journal = {Annales de l'Institut Fourier}, pages = {37--52}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {4}, year = {1979}, doi = {10.5802/aif.765}, mrnumber = {81b:22007}, zbl = {0403.46048}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.765/} }
TY - JOUR AU - Granirer, Edmond E. TI - On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra JO - Annales de l'Institut Fourier PY - 1979 SP - 37 EP - 52 VL - 29 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.765/ DO - 10.5802/aif.765 LA - en ID - AIF_1979__29_4_37_0 ER -
%0 Journal Article %A Granirer, Edmond E. %T On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra %J Annales de l'Institut Fourier %D 1979 %P 37-52 %V 29 %N 4 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.765/ %R 10.5802/aif.765 %G en %F AIF_1979__29_4_37_0
Granirer, Edmond E. On group representations whose $C^*$ algebra is an ideal in its von Neumann algebra. Annales de l'Institut Fourier, Tome 29 (1979) no. 4, pp. 37-52. doi : 10.5802/aif.765. http://www.numdam.org/articles/10.5802/aif.765/
[1] Multipliers of C*-Algebras, J. of Functional Analysis, 13 (1973), 277-301. | MR | Zbl
, , ,[2] Nonabelian Pontriagin duality, Duke Math. J., 39 (1972), 451-463. | Zbl
, ,[3] Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire, Thèse, Université Claude-Bernard, Lyon I, 1973.
,[4] Ideal C*-algebras, Duke Math. J., 40 (1973), 241-257. | MR | Zbl
,[5] Weakly almost periodic functions on semigroups, Gordon and Breach, 1970. | MR | Zbl
,[6] Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 2e edition, 1969. | Zbl
,[7] l'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236. | Numdam | MR | Zbl
,[8] Moyennes Invariantes et Représentations Unitaires, Lecture notes in mathematics, Springer Verlag, 1972, n° 300. | MR | Zbl
,[9] Linear Analysis and Representation Theory, Springer Verlag, 1973. | Zbl
,[10] Density theorems for some linear subspaces and some C*-subalgebras of VN(G), Proc. of Symp. on Harmonic Analysis and Function Spaces, Inst. Nazionale di Alta Matematica Rome March 1976, pp. 61-70. | MR | Zbl
,[11] Homogeneous spaces with finite invariant measure, Annals of Math., 75 (1962), 17-37. | MR | Zbl
,[12] Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27. | MR | Zbl
,[13] On topological properties of W*-algebras, Proc. Japan Acad., 33 (1957), 439-444. | MR | Zbl
,[14] Topology and the duals of certain locally compact groups, Trans. AMS, 150 (1970), 477-489. | MR | Zbl
,[15] W*-algebras and nonabelian harmonic analysis, J. of Functional Analysis, 11 (1972), 17-38. | MR | Zbl
,[16] On S-subgroups of solvable Lie groups, Amer. J. Math., 92 (1970), 389-397. | MR | Zbl
,[17] On isolated points in the dual spaces of locally compact groups, Math. Annalen, 218 (1975), 19-34. | MR | Zbl
,[18] Compactness properties of topological groups III, Trans AMS, 209 (1975), 399-418. | MR | Zbl
,[19] Homogeneous spaces with invariant measure, Amer. J. Math., 98 (1976), 311-324. | MR | Zbl
,[20] A separable group having a discrete dual space is compact, J. Functional Analysis, 10 (1972), 131-148. | MR | Zbl
,[21] A new look at Mackey's imprimitivity theorem, Proc. Conference on Harmonic Analysis Maryland 1971, Springer Lecture Notes, Vol. 266, 42-58. | Zbl
,[22] Induced representations of locally compact groups I, Annals of Math., 55 (1952), 101-139. | MR | Zbl
,Cité par Sources :