Une algèbre d’homomorphismes d’anneaux localisés affines d’une variété algébrique est continue par rapport à la topologie de Krull. Elle peut être ni ouverte ni fermée. Cependant, on montre que l’image induite sur l’anneau local analytique associé est également ouverte et fermée par rapport à la topologie de Krull. Afin de démontrer ceci, on prouve la conjecture suivante de Tougeron : si
An algebra homomorphism of the locatized affine rings of an algebraic variety is continuous in the Krull topology of the respective local rings. It is not necessarily open or closed in the Krull topology. However, we show that the induced map on the associated analytic local rings is also open and closed in the Krull topology. To do this we prove a conjecture of Tougeron which states that if
@article{AIF_1977__27_4_9_0, author = {Becker, Joseph}, title = {Expos\'e on a conjecture of {Tougeron}}, journal = {Annales de l'Institut Fourier}, pages = {9--27}, publisher = {Imprimerie Durand}, address = {Chartres}, volume = {27}, number = {4}, year = {1977}, doi = {10.5802/aif.670}, mrnumber = {58 #10904}, zbl = {0337.14002}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.670/} }
Becker, Joseph. Exposé on a conjecture of Tougeron. Annales de l'Institut Fourier, Tome 27 (1977) no. 4, pp. 9-27. doi : 10.5802/aif.670. https://www.numdam.org/articles/10.5802/aif.670/
[1] Resolution of singularities of embedded algebraic surfaces, Academic Press, 1966. | MR | Zbl
,[2] Homomorphism of analytic local rings, Creile's J., 242 (1970), 26-60. | Zbl
and ,[3] On solutions to analytic equations, Invent. Math., 5 (1968), 277-291. | MR | Zbl
,[4] The formal relations between analytic functions, Funck, Analiz. Appl., 5 (1971), 64-65. | MR | Zbl
,[5] Formal relations between analytic functions, Izv. Akad. Nauk. SSR, 37 (1973), 1056-1088. | Zbl
,[6] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math., 79 (1964), 109-326. | MR | Zbl
,[7] Local Rings, Interscience Publishers, 1962. | MR | Zbl
,[8] Courbes analytiques sur un germe d'espace analytique et applications, Ann. Inst. Fourier, Grenoble, 26, 2 (1976), 117-131. | Numdam | MR | Zbl
,Cité par Sources :