Les espaces de Banach
The Banach spaces
@article{AIF_1977__27_3_135_0, author = {Feichtinger, Hans G.}, title = {On a class of convolution algebras of functions}, journal = {Annales de l'Institut Fourier}, pages = {135--162}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, number = {3}, year = {1977}, doi = {10.5802/aif.665}, mrnumber = {57 #10358}, zbl = {0316.43004}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.665/} }
TY - JOUR AU - Feichtinger, Hans G. TI - On a class of convolution algebras of functions JO - Annales de l'Institut Fourier PY - 1977 SP - 135 EP - 162 VL - 27 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.665/ DO - 10.5802/aif.665 LA - en ID - AIF_1977__27_3_135_0 ER -
Feichtinger, Hans G. On a class of convolution algebras of functions. Annales de l'Institut Fourier, Tome 27 (1977) no. 3, pp. 135-162. doi : 10.5802/aif.665. https://www.numdam.org/articles/10.5802/aif.665/
[1] Banach algebras which are ideals in a Banach algebra, Pac. J. Math., 38 (1971), 1-7. | MR | Zbl
,[2] Approximationsprozesse und Interpolationsmethoden, Bibl. Inst. Mannheim, 1968. | Zbl
- ,[3] Harmonic analysis based on certain commutative Banach algebras, Acta Math., 96 (1956), 1-66. | MR | Zbl
,[4] Some new subalgebras of L1 (G), Indag. Math., 36 (1974), 44-47. | MR | Zbl
,[5] Functional analysis and semigroups, Amer. Math. Soc. Publ., XXXI (1948). | MR | Zbl
,[6] On the spectrum of convolution operators on groups of polynomial growth, Invent. math., 17 (1972), 135-142. | MR | Zbl
,[7] Classical harmonic analysis and locally compact groups, Oxford University Press, 1968. | MR | Zbl
,[8] Sur la structure locale des groupes abéliens localement compacts, Bull. Soc. Math. France, Mémoire 24 (1970). | Numdam | MR | Zbl
,[9] Nonfactorization in group algebras, Studia math., 42 (1972), 231-241. | MR | Zbl
,[10] On identifying the maximal ideals in Banach algebras, J. Math. Anal. Appl., 50 (1975), 489-510. | MR | Zbl
,[11] Finite sections of Wiener-Hopf equations and Szegö polynomials, J. Math. Anal. Appl., 11 (1965), 290-320. | MR | Zbl
,Cité par Sources :