The Markov property for generalized gaussian random fields
Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 143-167.

Nous obtenons des conditions nécessaires et suffisantes pour qu’un processus gaussien (ou, plus généralement, une distribution aléatoire gaussienne) à plusieurs paramètres possède la propriété markovienne par rapport à la famille des ensembles ouverts.

We obtain necessary and sufficient conditions in order that a Gaussian process of many parameters (more generally, a generalized Gaussian random field in Rn) possess the Markov property relative to a class of open sets. The method adopted is the Hilbert space approach initiated by Cartier and Pitt. Applications are discussed.

@article{AIF_1974__24_2_143_0,
     author = {Kallianpur, G. and Mandrekar, V.},
     title = {The {Markov} property for generalized gaussian random fields},
     journal = {Annales de l'Institut Fourier},
     pages = {143--167},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     number = {2},
     year = {1974},
     doi = {10.5802/aif.509},
     mrnumber = {53 #9362},
     zbl = {0275.60054},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.509/}
}
TY  - JOUR
AU  - Kallianpur, G.
AU  - Mandrekar, V.
TI  - The Markov property for generalized gaussian random fields
JO  - Annales de l'Institut Fourier
PY  - 1974
SP  - 143
EP  - 167
VL  - 24
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.509/
DO  - 10.5802/aif.509
LA  - en
ID  - AIF_1974__24_2_143_0
ER  - 
%0 Journal Article
%A Kallianpur, G.
%A Mandrekar, V.
%T The Markov property for generalized gaussian random fields
%J Annales de l'Institut Fourier
%D 1974
%P 143-167
%V 24
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.509/
%R 10.5802/aif.509
%G en
%F AIF_1974__24_2_143_0
Kallianpur, G.; Mandrekar, V. The Markov property for generalized gaussian random fields. Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 143-167. doi : 10.5802/aif.509. https://www.numdam.org/articles/10.5802/aif.509/

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, 1965. | MR | Zbl

[2] P. Assouad, Étude d'un espace reproduisant attaché au mouvement brownian à paramètre temporel dans Rn, C.R. Acad. Sc., Paris, 269 (1969), 36-37. | MR | Zbl

[3] P. Cartier, Introduction à l'étude des mouvements Browniens à plusieurs paramètres, Séminaire de Probabilités V, Springer-Verlag, (#191), (1971), 58-75. | Numdam

[4] A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, 1963. | MR | Zbl

[5] H. P. Mckean Jr, Brownian motion with a several dimensional time, Theory Prob. Applications, 8 (1963), 335-354. | MR | Zbl

[6] G. M. Molchan, On some problems concerning Brownian motion in Lévy's sense, Theory Prob. Applications, 12 (1967), 682-690. | Zbl

[7] G. M. Molchan, Characterization of Gaussian fields with Markovian property, Dokl. Akad. Nauk SSSR, 197 (1971). Translation Soviet Math. Dokl, 12 (1971), 563-567. | Zbl

[8] J. Peetre, Rectification à l'article «une caractérisation abstraite des opérateurs différentiels», Math. Scan, 8 (1960), 116-120. | MR | Zbl

[9] L. Pitt, A Markov property for Gaussian processes with a multidimensional time, J. Rational Mech. and Anal, (1971), 368-391. | Zbl

[10] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967. | MR | Zbl

  • Ooi, Takumu Markov properties for Gaussian fields associated with Dirichlet forms, Osaka Journal of Mathematics, Volume 60 (2023) no. 3, pp. 579-595 | Zbl:1521.31023
  • Kelley, Troy Dale; Lebiere, Christian From Cognitive Modeling to Robotics: How Research on Human Cognition and Computational Cognitive Architectures can be Applied to Robotics Problems, Advances in Human Factors in Simulation and Modeling, Volume 780 (2019), p. 273 | DOI:10.1007/978-3-319-94223-0_26
  • Gu, Yu; Mourrat, Jean-Christophe On generalized Gaussian free fields and stochastic homogenization, Electronic Journal of Probability, Volume 22 (2017) no. none | DOI:10.1214/17-ejp51
  • Mondal, Debashis Applying Dynkin's isomorphism: an alternative approach to understand the Markov property of the de Wijs process, Bernoulli, Volume 21 (2015) no. 3, pp. 1289-1303 | DOI:10.3150/13-bej541 | Zbl:1339.60059
  • Moura, J.M.F.; Goswami, S. Gauss-Markov random fields (CMrf) with continuous indices, IEEE Transactions on Information Theory, Volume 43 (1997) no. 5, p. 1560 | DOI:10.1109/18.623152
  • Chiang, T. S.; Chow, Y. On Global and Sharp Markov Properties of Random Functional Series in Sobolev Spaces, Theory of Probability Its Applications, Volume 40 (1996) no. 2, p. 348 | DOI:10.1137/1140036
  • Kinateder, Kimberly K. J. Corner Markov processes, Journal of Theoretical Probability, Volume 8 (1995) no. 3, pp. 539-547 | DOI:10.1007/bf02218043 | Zbl:0841.60034
  • Goswami, S.; Moura, J.M.F., Proceedings of 1994 Workshop on Information Theory and Statistics (1994), p. 64 | DOI:10.1109/wits.1994.513893
  • Ivanoff, B. Gail; Merzbach, Ely; Schiopu-Kratina, Ioana Predictability and stopping on lattices of sets, Probability Theory and Related Fields, Volume 97 (1993) no. 4, pp. 433-446 | DOI:10.1007/bf01192958 | Zbl:0794.60025
  • Mandrekar, V.; Zhang, Sixiang Markov Property of Measure-indexed Gaussian Random Fields, Stochastic Processes (1993), p. 253 | DOI:10.1007/978-1-4615-7909-0_28
  • Ivanoff, B. G.; Merzbach, E. Set-Indexed Stochastic Processes and Predictability, Theory of Probability Its Applications, Volume 37 (1993) no. 1, p. 61 | DOI:10.1137/1137011
  • Dalang, Robert C.; Russo, Francesco A prediction problem for the Brownian sheet, Journal of Multivariate Analysis, Volume 26 (1988) no. 1, pp. 16-47 | DOI:10.1016/0047-259x(88)90071-1 | Zbl:0664.60052
  • Kolsrud, Torbjörn On the Markov property for certain Gaussian random fields, Probability Theory and Related Fields, Volume 74 (1986), pp. 393-402 | DOI:10.1007/bf00699097 | Zbl:0592.60039
  • Tautu, Petre Random fields: Applications in cell biology, Stochastic Spatial Processes, Volume 1212 (1986), p. 258 | DOI:10.1007/bfb0076254
  • Röckner, Michael Generalized Markov fields and Dirichlet forms, Acta Applicandae Mathematicae, Volume 3 (1985), pp. 285-311 | DOI:10.1007/bf00047332 | Zbl:0588.60044
  • Wong, Eugene; Zakai, Moshe Markov processes on the plane, Stochastics, Volume 15 (1985), pp. 311-333 | DOI:10.1080/17442508508833362 | Zbl:0588.60043
  • Russo, Francesco Etude de la propriete de markov etroite en relation avec les processus planaires a accroissements independants, Séminaire de Probabilités XVIII 1982/83, Volume 1059 (1984), p. 353 | DOI:10.1007/bfb0100054
  • von Weizsäcker, Heinrich Exchanging the order of taking suprema and countable intersections of sigma-algebras, Annales de l'Institut Henri Poincaré. Nouvelle Série. Section B. Calcul des Probabilités et Statistique, Volume 19 (1983), pp. 91-100 | Zbl:0509.60002
  • Roeckner, Michael Markov property of generalized fields and axiomatic potential theory, Mathematische Annalen, Volume 264 (1983), pp. 153-177 | DOI:10.1007/bf01457522 | Zbl:0519.60047
  • MANDREKAR, V. Markov Properties for Random Fields**This work was supported in part by the National Science Foundation MCS78-02878., Probabilistic Analysis and Related Topics (1983), p. 161 | DOI:10.1016/b978-0-12-095603-6.50009-9
  • Rozanov, Yu. A. Markov property of random fields, Journal of Soviet Mathematics, Volume 16 (1981), pp. 1191-1233 | DOI:10.1007/bf01084892 | Zbl:0463.60047
  • Balakrishnan, A. V. Likelihood ratios and kalman filtering for random fields, Stochastic Differential Systems, Volume 36 (1981), p. 239 | DOI:10.1007/bfb0006427
  • Russek, Andrzej Gaussian n-Markovian processes and stochastic boundary value problems, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 53 (1980), pp. 117-122 | DOI:10.1007/bf01013310 | Zbl:0432.60043
  • ROZANOV, YU.A. Stochastic Markovian Fields, Volume 2 (1979), p. 203 | DOI:10.1016/b978-0-12-426602-5.50011-6
  • Benassi, Albert Processus Gaussiens, Markoviens d'ordre p, fortement Markoviens d'ordre p et problème de Dirichlet stochastique, Annales de l'Institut Henri Poincaré. Nouvelle Série. Section B. Calcul des Probabilités et Statistique, Volume 15 (1979), pp. 107-126 | Zbl:0423.60039
  • Mandrekar, V. Germ-field Markov property for multiparameter processes, Séminaire de Probabilités X Université de Strasbourg, Volume 511 (1976), p. 78 | DOI:10.1007/bfb0101097
  • Pitt, Loren D. Stationary Gaussian Markov fields on Rd with a deterministic component, Journal of Multivariate Analysis, Volume 5 (1975), pp. 300-311 | DOI:10.1016/0047-259x(75)90048-2 | Zbl:0317.60016
  • Ciesielski, Z. On Lévy's Brownian Motion with several - dimensional time, Probability-Winter School, Volume 472 (1975), p. 29 | DOI:10.1007/bfb0081944

Cité par 28 documents. Sources : Crossref, zbMATH