Absolutely convex sets in barrelled spaces
Annales de l'Institut Fourier, Tome 21 (1971) no. 2, pp. 3-13.

Étant donné une suite croissante {An} d’ensembles absolument convexes dans un espace tonnelé E, de manière que n=1An=E, on déduit quelques propriétés de E à partir des propriétés des ensembles de {An}. On démontre que dans un espace tonnelé quelconque, tout sous-espace de codimension infinie dénombrable est tonnelé.

If {An} is an increasing sequence of absolutely convex sets, in a barrelled space E, such that n=1An=E, it is deduced some properties of E from the properties of the sets of {An}. It is shown that in a barrelled space any subspace of infinite countable codimension, is barrelled.

@article{AIF_1971__21_2_3_0,
     author = {Valdivia, Manuel},
     title = {Absolutely convex sets in barrelled spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {3--13},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {2},
     year = {1971},
     doi = {10.5802/aif.368},
     mrnumber = {48 #11968},
     zbl = {0205.40904},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.368/}
}
TY  - JOUR
AU  - Valdivia, Manuel
TI  - Absolutely convex sets in barrelled spaces
JO  - Annales de l'Institut Fourier
PY  - 1971
SP  - 3
EP  - 13
VL  - 21
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.368/
DO  - 10.5802/aif.368
LA  - en
ID  - AIF_1971__21_2_3_0
ER  - 
%0 Journal Article
%A Valdivia, Manuel
%T Absolutely convex sets in barrelled spaces
%J Annales de l'Institut Fourier
%D 1971
%P 3-13
%V 21
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.368/
%R 10.5802/aif.368
%G en
%F AIF_1971__21_2_3_0
Valdivia, Manuel. Absolutely convex sets in barrelled spaces. Annales de l'Institut Fourier, Tome 21 (1971) no. 2, pp. 3-13. doi : 10.5802/aif.368. https://www.numdam.org/articles/10.5802/aif.368/

[1] I. Amemiya und Y. Komura, Uber nicht-vollständige Montelräume. Math. Annalen. 177, 273-277, (1968). | MR | Zbl

[2] M. De Wilde, Sur les sous-espaces de codimension finie d'un espace linéaire à semi-normes, To appear in Bull. Soc. R. Sciences, Liége. | Zbl

[3] J. Dieudonné, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Pol. Math. 25, 50-55, (1952). | MR | Zbl

[4] J. Horváth, Topological Vector Spaces and Distributions. I. Massachussets (1966). | MR | Zbl

[5] G. Köthe, Die Bilräume abgeschlossener Operatoren, J. für die reine und And. Math., 232, 110-111, (1968). | Zbl

  • Kąkol, Jerzy; Kubiś, Wiesław; López-Pellicer, Manuel; Sobota, Damian Elementary Facts about Baire and Baire-Type Spaces, Descriptive Topology in Selected Topics of Functional Analysis, Volume 24 (2025), p. 15 | DOI:10.1007/978-3-031-76062-4_2
  • Kališnik, J. Reflexivity of the Space of Transversal Distributions, The Journal of Geometric Analysis, Volume 33 (2023) no. 10 | DOI:10.1007/s12220-023-01390-y
  • Kąkol, Jerzy; Saxon, Stephen A. The quotient/codimension problems, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 113 (2019) no. 2, p. 1429 | DOI:10.1007/s13398-018-0556-2
  • Saxon, Stephen A. Mackey hyperplanes/enlargements for Tweddle’s space, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, Volume 108 (2014) no. 2, p. 1035 | DOI:10.1007/s13398-013-0159-x
  • Valdivia, Manuel The space H(Ω,(zj)) of holomorphic functions, Journal of Mathematical Analysis and Applications, Volume 337 (2008) no. 2, p. 821 | DOI:10.1016/j.jmaa.2007.03.070
  • Kąkol, Jerzy; Saxon, Stephen A. The Semi-Baire-like Three-Space Problems, Advances in Applied Mathematics, Volume 25 (2000) no. 1, p. 57 | DOI:10.1006/aama.1999.0690
  • Saxon, Stephen; Ruiz, L. Dual local completeness, Proceedings of the American Mathematical Society, Volume 125 (1997) no. 4, p. 1063 | DOI:10.1090/s0002-9939-97-03864-1
  • Burke, Maxim R.; Todorcevic, Stevo Bounded sets in topological vector spaces, Mathematische Annalen, Volume 305 (1996) no. 1, p. 103 | DOI:10.1007/bf01444213
  • Ferrer, J.; López-Pellicer, M. Algebras of sets generating non-barrelled spaces, Periodica Mathematica Hungarica, Volume 29 (1994) no. 3, p. 207 | DOI:10.1007/bf01875850
  • Narayanaswami, P. P. The separable quotient problem for barrelled spaces, Functional Analysis and Related Topics, 1991, Volume 1540 (1993), p. 289 | DOI:10.1007/bfb0085487
  • Todd, Aaron R. Beside and Between Baire and Barrelled or Linear Variations on Category, Annals of the New York Academy of Sciences, Volume 607 (1990) no. 1, p. 128 | DOI:10.1111/j.1749-6632.1990.tb22752.x
  • Ferrando, J. C.; L�pez-Pellicer, M. Strong barrelledness properties inl 0 ? (X A) and bounded finite additive measures, Mathematische Annalen, Volume 287 (1990) no. 1, p. 727 | DOI:10.1007/bf01446926
  • Ferrando, J. C.; López-Pellicer, M. Quasi-suprabarrelled spaces, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 46 (1989) no. 1, p. 137 | DOI:10.1017/s1446788700030433
  • Gim�nez, I.; L�pez, J. A. On weak and Schauder ?-bases in topological vector spaces, Archiv der Mathematik, Volume 51 (1988) no. 6, p. 561 | DOI:10.1007/bf01261978
  • References, Barrelled Locally Convex Spaces, Volume 131 (1987), p. 484 | DOI:10.1016/s0304-0208(08)71679-7
  • Valdivia, M. (F)-spaces and strict (LF)-spaces, Mathematische Zeitschrift, Volume 195 (1987) no. 3, p. 345 | DOI:10.1007/bf01161761
  • Chapter I–Mixed Topologies, Saks Spaces and Applications to Functional Analysis, Volume 139 (1987), p. 1 | DOI:10.1016/s0304-0208(08)72317-x
  • Orihuela, Jos� On the equivalence of weak and Schauder bases, Archiv der Mathematik, Volume 46 (1986) no. 5, p. 447 | DOI:10.1007/bf01210785
  • Narayanaswami, P.P. Classification of (LF)-Spaces by Some Baire-Like Covering Properties, Complex Analysis, Functional Analysis and Approximation Theory, Proceedings of the Conference on Complex Analysis and Approximation Theory Universidade Estadual de Campinas, Volume 125 (1986), p. 247 | DOI:10.1016/s0304-0208(08)72172-8
  • Valdivia, M. On Certain Metrizable Locally Convex Spaces, Complex Analysis, Functional Analysis and Approximation Theory, Proceedings of the Conference on Complex Analysis and Approximation Theory Universidade Estadual de Campinas, Volume 125 (1986), p. 287 | DOI:10.1016/s0304-0208(08)72176-5
  • Narayanaswami, P. P.; Saxon, Stephen A. (LF)-spaces, quasi-baire spaces and the strongest locally convex topology, Mathematische Annalen, Volume 274 (1986) no. 4, p. 627 | DOI:10.1007/bf01458598
  • Kąkol, Jerzy On Subspaces ofb-Spaces in the Sense of Noureddine, Mathematische Nachrichten, Volume 120 (1985) no. 1, p. 43 | DOI:10.1002/mana.19851200105
  • Valdivia, Manuel A Property of Fréchet Spaces, Functional Analysis, Holomorphy and Approximation Theory II, Volume 86 (1984), p. 469 | DOI:10.1016/s0304-0208(08)70841-7
  • Kąkol, Jerzy On subspaces and products of some topological linear spaces, Archiv der Mathematik, Volume 40 (1983) no. 1, p. 355 | DOI:10.1007/bf01192795
  • Carreras, Pedro Pérez; Bonet, José Remarks and examples concerning suprabarreled and totally barreled spaces, Archiv der Mathematik, Volume 39 (1982) no. 4, p. 340 | DOI:10.1007/bf01899442
  • Mukherjee, T. K.; Summers, W. H. Stability and closed graph theorems in classes of bornological spaces, Glasgow Mathematical Journal, Volume 23 (1982) no. 2, p. 151 | DOI:10.1017/s0017089500004924
  • References, Topics in Locally Convex Spaces, Volume 67 (1982), p. 501 | DOI:10.1016/s0304-0208(08)70400-6
  • Valdivia, Manuel On suprabarrelled spaces, Functional Analysis, Holomorphy, and Approximation Theory, Volume 843 (1981), p. 572 | DOI:10.1007/bfb0089291
  • Valdivia, Manuel; P�rez Carreras, Pedro On totally barreled spaces, Mathematische Zeitschrift, Volume 178 (1981) no. 2, p. 263 | DOI:10.1007/bf01262043
  • Moltó, Aníbal On uniform boundedness properties in exhausting additive set function spaces, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 90 (1981) no. 1-2, p. 175 | DOI:10.1017/s0308210500015419
  • Webb, J H SUBSPACES OF BARRELLED SPACES, Quaestiones Mathematicae, Volume 4 (1981) no. 4, p. 323 | DOI:10.1080/16073606.1981.9632252
  • De Wilde, Marc; Tsirulnikov, Bella Barrelled spaces with a B-complete completion, manuscripta mathematica, Volume 33 (1981) no. 3-4, p. 411 | DOI:10.1007/bf01798237
  • Robertson, W.J.; Tweddle, I.; Yeomans, F.E. On the stability of barrelled topologies, III, Bulletin of the Australian Mathematical Society, Volume 22 (1980) no. 1, p. 99 | DOI:10.1017/s0004972700006377
  • Saiflu, H.; Tweddle, I. From B-completeness to countable codimensional subspaces via the closed graph theorem, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 86 (1980) no. 1-2, p. 107 | DOI:10.1017/s030821050001204x
  • Robertson, W.J.; Yeomans, F.E. On the stability of barrelled topologies, I, Bulletin of the Australian Mathematical Society, Volume 20 (1979) no. 3, p. 385 | DOI:10.1017/s0004972700011096
  • Marquina, A.; Serna, J. M. Sanz Barrelledness conditions onC 0 (E), Archiv der Mathematik, Volume 31 (1978) no. 1, p. 589 | DOI:10.1007/bf01226496
  • Spaces with an absorbing sequence, Topological Vector Spaces, Volume 639 (1978), p. 84 | DOI:10.1007/bfb0068531
  • Husain, T.; Wong, Yau-Chuen On various types of barrelledness and the hereditary property of (DF)-spaces, Glasgow Mathematical Journal, Volume 17 (1976) no. 2, p. 134 | DOI:10.1017/s001708950000286x
  • Popoola, J. O.; Tweddle, I. On the closed graph theorem, Glasgow Mathematical Journal, Volume 17 (1976) no. 2, p. 89 | DOI:10.1017/s0017089500002780
  • Valdivia, M. On countable locally convex direct sums, Archiv der Mathematik, Volume 26 (1975) no. 1, p. 407 | DOI:10.1007/bf01229759
  • Dierolf, Susanne �ber assoziierte lineare und lokalkonvexe Topologien, Manuscripta Mathematica, Volume 16 (1975) no. 1, p. 27 | DOI:10.1007/bf01169061
  • Muni, Giuseppe Spazi a-tonnelés, Annali di Matematica Pura ed Applicata, Volume 99 (1974) no. 1, p. 191 | DOI:10.1007/bf02413725
  • Eberhardt, Volker �ber einen Graphensatz f�r Abbildungen mit normiertem Zielraum, Manuscripta Mathematica, Volume 12 (1974) no. 1, p. 47 | DOI:10.1007/bf01166233
  • Lurje, Pawel Tonneliertheit in lokalkonvexen Vektorgruppen, Manuscripta Mathematica, Volume 14 (1974) no. 2, p. 107 | DOI:10.1007/bf01171437
  • Ruess, W. A Grothendieck representation for the completion of cones of continuous seminorms, Mathematische Annalen, Volume 208 (1974) no. 1, p. 71 | DOI:10.1007/bf01432521
  • Mukherjee, T. K. Hereditary completeness and quasi-reflexivity, Proceedings of the American Mathematical Society, Volume 46 (1974) no. 2, p. 285 | DOI:10.1090/s0002-9939-1974-0352944-1
  • Valdivia, Manuel On a class of quasi-barrelled spaces, Mathematische Annalen, Volume 202 (1973) no. 4, p. 295 | DOI:10.1007/bf01433459
  • Todd, Aaron R.; Saxon, Stephen A. A property of locally convex Baire spaces, Mathematische Annalen, Volume 206 (1973) no. 1, p. 23 | DOI:10.1007/bf01431526
  • Webb, J. H. Countable-codimensional subspaces of locally convex spaces, Proceedings of the Edinburgh Mathematical Society, Volume 18 (1973) no. 3, p. 167 | DOI:10.1017/s0013091500009895
  • De Wilde, M. Various types of barrelledness and increasing sequences of balanced and convex sets in locally convex spaces, Summer School on Topological Vector Spaces, Volume 331 (1973), p. 211 | DOI:10.1007/bfb0068232
  • Horváth, John Locally convex spaces, Summer School on Topological Vector Spaces, Volume 331 (1973), p. 41 | DOI:10.1007/bfb0068227
  • Saxon, Stephen A. Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Mathematische Annalen, Volume 197 (1972) no. 2, p. 87 | DOI:10.1007/bf01419586
  • Roelcke, W. On the finest locally convex topology agreeing with a given topology on a sequence of absolutely convex sets, Mathematische Annalen, Volume 198 (1972) no. 1, p. 57 | DOI:10.1007/bf01420498
  • Valdivia, Manuel OnD? spaces, Mathematische Annalen, Volume 191 (1971) no. 1, p. 38 | DOI:10.1007/bf01433469

Cité par 54 documents. Sources : Crossref