Sur les programmes convexes définis dans des espaces vectoriels topologiques
Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 457-491.

On étudie les conditions d’optimalité et la dualité pour des programmes convexes : sup{f(x)|g(x)0}f est une fonction numérique concave définie dans un espace vectoriel topologique réel E localement convexe séparé, et où g est une application convexe d’une partie de E dans un espace vectoriel topologique localement convexe séparé et ordonné G. On définit à cet effet les sous-différentiels et la fonction conjuguée d’une fonction vectorielle à valeurs dans G. On introduit également les ensembles et fonctions localement convexes définis dans un espace localement convexe. On obtient ainsi diverses extensions de résultats connus en programmation convexe.

We study optimally conditions and duality for convex programs : sup{f(x)|g(x)0} where f is a concave real-valued function which is defined on a subset of a real locally convex Hausdorff topological vector space E, and where g is a convex mapping of a subset of E into a real locally convex Hausdorff ordered topological vector space G. For this purpose, we define subdifferentials and a conjugate function of a G-valued function. We also introduce locally convex subsets and locally convex functions defined on a locally convex topological vector space. We obtain, in this way, several extensions of well-known results in convex programming.

@article{AIF_1970__20_1_457_0,
     author = {Raffin, Claude},
     title = {Sur les programmes convexes d\'efinis dans des espaces vectoriels topologiques},
     journal = {Annales de l'Institut Fourier},
     pages = {457--491},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {20},
     number = {1},
     year = {1970},
     doi = {10.5802/aif.347},
     mrnumber = {42 #1527},
     zbl = {0195.49601},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.347/}
}
TY  - JOUR
AU  - Raffin, Claude
TI  - Sur les programmes convexes définis dans des espaces vectoriels topologiques
JO  - Annales de l'Institut Fourier
PY  - 1970
SP  - 457
EP  - 491
VL  - 20
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.347/
DO  - 10.5802/aif.347
LA  - fr
ID  - AIF_1970__20_1_457_0
ER  - 
%0 Journal Article
%A Raffin, Claude
%T Sur les programmes convexes définis dans des espaces vectoriels topologiques
%J Annales de l'Institut Fourier
%D 1970
%P 457-491
%V 20
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.347/
%R 10.5802/aif.347
%G fr
%F AIF_1970__20_1_457_0
Raffin, Claude. Sur les programmes convexes définis dans des espaces vectoriels topologiques. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 457-491. doi : 10.5802/aif.347. https://www.numdam.org/articles/10.5802/aif.347/

[1] K.J. Arrow, L. Hurwicz, H. Uzawa, Studies in linear and non-linear programming, Stanford University Press (California) (1958). | MR | Zbl

[2] N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris. | Zbl

[3] R.J. Duffin, Infinite programs, Linear inequalities and related systems (edited by Kuhn and Tucker) (1956) 158-170. | Zbl

[4] K.S. Krestchmer, Programmes in paired spaces, Canadian Journal of Mathematics, Vol. XIII, N° 2, (1961) 221-238. | MR | Zbl

[5] H.W. Kuhn and A.W. Tucker, Non linear programming, Proceedings of the second Berkeley Symposium University of California Press (1951) 481-492. | MR | Zbl

[6] K. Fan, A generalization of the Alaoglu-Bourbaki theorem and its applications, Math. Zeithschr. 88 (1965) 48-60. | MR | Zbl

[7] J.J. Moreau, Fonctionnelles convexes, Séminaire sur les équations aux dérivées partielles, Collège de France, 1966-1967. | Numdam

[8] R. Pallu De La Barriere, Duality in dynamic programming, First International Conference on programming and control, Colorado Springs, SIAM Journal of control, Vol. 4 n° 1, féb. 1966. | MR | Zbl

[9] B.N. Psenicnyj, Programmation convexe dans un espace normé, Kibernetika, (1965), 5, p. 46-54.

[10] Cl. Raffin, Programmes linéaires d'appui d'un programme convexe, application aux conditions d'optimalité et à la dualité, Revue Française d'Informatique et de Recherche opérationnelle, (Série rouge, n° 13, 1968, p. 27-60). | Numdam | Zbl

[11] Cl. Raffin, Sur les programmes convexes définis dans des espaces vectoriels topologiques, Note aux Comptes rendus de l'Académie des Sciences de Paris (t. 268, A, 1969, p. 738-741). | MR | Zbl

[12] R.T. Rockafellar, Characterisation of the subdifferentials of convex functions, Pacific Journal of Mathematics, Vol. XVII (1966) 497-510. | MR | Zbl

[13] R.T. Rockafellar, Extension of Fenchel's duality theorem for convex functions, Duke Math. Journal 33-1, March 1966, 81-89. | MR | Zbl

[14] R.T. Rockafellar, Duality in non linear programming Amer. Math. Soc. 11 (1968) p. 400-422. | MR | Zbl

  • Khan, Akhtar A.; Tammer, Christiane; Zălinescu, Constantin Conjugates and Subdifferentials, Set-valued Optimization (2015), p. 275 | DOI:10.1007/978-3-642-54265-7_7
  • Dinh, N.; Vallet, G.; Volle, M. Functional inequalities and theorems of the alternative involving composite functions, Journal of Global Optimization, Volume 59 (2014) no. 4, p. 837 | DOI:10.1007/s10898-013-0100-z
  • El Maghri, M. Pareto–Fenchel ϵ -subdifferential sum rule and ϵ -efficiency, Optimization Letters, Volume 6 (2012) no. 4, p. 763 | DOI:10.1007/s11590-011-0301-7
  • Volle, Michel Theorems of the Alternative for Multivalued Mappings and Applications to Mixed ConvexSystems of Inequalities, Set-Valued and Variational Analysis, Volume 18 (2010) no. 3-4, p. 601 | DOI:10.1007/s11228-010-0155-7
  • Hamel, Andreas H. A Duality Theory for Set-Valued Functions I: Fenchel Conjugation Theory, Set-Valued and Variational Analysis, Volume 17 (2009) no. 2, p. 153 | DOI:10.1007/s11228-009-0109-0
  • Winkler, Kristin A Characterization of Efficient and Weakly Efficient Points in Convex Vector Optimization, SIAM Journal on Optimization, Volume 19 (2008) no. 2, p. 756 | DOI:10.1137/060674363
  • Stamate, Cristina Vector subdifferentials and tangent cones, Journal of Numerical Analysis and Approximation Theory, Volume 34 (2005) no. 2, p. 207 | DOI:10.33993/jnaat342-807
  • Volle, M. Duality Principles for Optimization Problems Dealing with the Difference of Vector-Valued Convex Mappings, Journal of Optimization Theory and Applications, Volume 114 (2002) no. 1, p. 223 | DOI:10.1023/a:1015424423727
  • N´emeth, A.B. Convex operators: some subdifferentiability results, Optimization, Volume 23 (1992) no. 4, p. 275 | DOI:10.1080/02331939208843766
  • Penot, J. P. A new constraint qualification condition, Journal of Optimization Theory and Applications, Volume 48 (1986) no. 3, p. 459 | DOI:10.1007/bf00940572
  • Borwein, J.M; Penot, J.P; Thera, M Conjugate convex operators, Journal of Mathematical Analysis and Applications, Volume 102 (1984) no. 2, p. 399 | DOI:10.1016/0022-247x(84)90180-x
  • Kusraev, A. G.; Kutateladze, S. S. Local convex analysis, Journal of Soviet Mathematics, Volume 26 (1984) no. 4, p. 2048 | DOI:10.1007/bf01084446
  • Borwein, J.M. Subgradients of convex operators, Mathematische Operationsforschung und Statistik. Series Optimization, Volume 15 (1984) no. 2, p. 179 | DOI:10.1080/02331938408842921
  • Penot, Jean-Paul Compact nets, filters, and relations, Journal of Mathematical Analysis and Applications, Volume 93 (1983) no. 2, p. 400 | DOI:10.1016/0022-247x(83)90184-1
  • Thibault, Lionel Subdifferentials of nonconvex vector-valued functions, Journal of Mathematical Analysis and Applications, Volume 86 (1982) no. 2, p. 319 | DOI:10.1016/0022-247x(82)90226-8
  • Penot, Jean-Paul On regularity conditions in mathematical programming, Optimality and Stability in Mathematical Programming, Volume 19 (1982), p. 167 | DOI:10.1007/bfb0120988
  • Thibault, Lionel Subdifferentials of compactly lipschitzian vector-valued functions, Annali di Matematica Pura ed Applicata, Volume 125 (1980) no. 1, p. 157 | DOI:10.1007/bf01789411
  • Nakamura, Tadashi; Yamasaki, Maretsugu Sufficient conditions for duality theorems in infinite linear programming problems, Hiroshima Mathematical Journal, Volume 9 (1979) no. 2 | DOI:10.32917/hmj/1206134890
  • Penot, Jean-Paul Calcul sous-differentiel et optimisation, Journal of Functional Analysis, Volume 27 (1978) no. 2, p. 248 | DOI:10.1016/0022-1236(78)90030-7
  • Elster, Karl-Heinz; Nehse, Reinhard Konjugierte operatoren und subdifferentiale, Mathematische Operationsforschung und Statistik, Volume 6 (1975) no. 4, p. 641 | DOI:10.1080/02331887508801242

Cité par 20 documents. Sources : Crossref