Fonctions opérant sur les fonctions définies-positives
Annales de l'Institut Fourier, Tome 13 (1963) no. 1, pp. 161-180.

Soit G un groupe commutatif localement compact. On se propose de déterminer les fonctions f, définies sur le disque-unité ouvert du plan complexe [z:|z|<1], à valeurs complexes, telles que la fonction composée f(ϕ) soit définie-positive chaque fois que ϕ est une fonction définie-positive sur G avec |ϕ|<1 partout. On prouve que si G contient des éléments dont les ordres sont aussi grands qu’on veut, alors il faut et il suffit que f soit représentée par une série convergente pour |z|<1

f(x)=m,n=0Am,nZmZ¯nchaqueAm,n0.

Puis on étudie quelques problèmes voisins mais plus fins que celui-ci.

@article{AIF_1963__13_1_161_0,
     author = {Herz, Carl S.},
     title = {Fonctions op\'erant sur les fonctions d\'efinies-positives},
     journal = {Annales de l'Institut Fourier},
     pages = {161--180},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {13},
     number = {1},
     year = {1963},
     doi = {10.5802/aif.137},
     mrnumber = {27 #2806},
     zbl = {0143.36003},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.137/}
}
TY  - JOUR
AU  - Herz, Carl S.
TI  - Fonctions opérant sur les fonctions définies-positives
JO  - Annales de l'Institut Fourier
PY  - 1963
SP  - 161
EP  - 180
VL  - 13
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.137/
DO  - 10.5802/aif.137
LA  - fr
ID  - AIF_1963__13_1_161_0
ER  - 
%0 Journal Article
%A Herz, Carl S.
%T Fonctions opérant sur les fonctions définies-positives
%J Annales de l'Institut Fourier
%D 1963
%P 161-180
%V 13
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.137/
%R 10.5802/aif.137
%G fr
%F AIF_1963__13_1_161_0
Herz, Carl S. Fonctions opérant sur les fonctions définies-positives. Annales de l'Institut Fourier, Tome 13 (1963) no. 1, pp. 161-180. doi : 10.5802/aif.137. https://www.numdam.org/articles/10.5802/aif.137/

[1] Comptes rendus Acad. Sci. Paris, t. 255, 1962, pp. 2046-2048.

[2] Comptes rendus Acad. Sci. Paris., t. 255, 1962, pp. 2560-2561.

[3] W. Rudin, Positive Definite Sequences and Absolutely Monotonic Functions, Duke J., 26, 1959, pp. 617-622. | MR | Zbl

[4] J. Schur, Bemerkungen zur Theorie des beschränkten Bilineanformen mit unendlichen vielen Veranderlichen, J. für. Math., 140, 1911, p. 14. | JFM

  • Vishwakarma, Prateek Kumar Positivity preservers forbidden to operate on diagonal blocks, Transactions of the American Mathematical Society, Volume 376 (2023) no. 8, pp. 5261-5279 | DOI:10.1090/tran/8256 | Zbl:1527.15037
  • Krishna, Krishnanagara Mahesh C*-algebraic Schur product theorem, Pólya-Szegő-Rudin question and Novak's conjecture, Journal of the Korean Mathematical Society, Volume 59 (2022) no. 4, pp. 789-804 | DOI:10.4134/jkms.j210627 | Zbl:1494.46050
  • Belton, Alexander; Guillot, Dominique; Khare, Apoorva; Putinar, Mihai A panorama of positivity. II: Fixed dimension, Complex analysis and spectral theory. Conference in celebration of Thomas Ransford's 60th birthday, Laval University, Québec, Canada, May 21–25, 2018, Providence, RI: American Mathematical Society (AMS), 2020, pp. 109-150 | DOI:10.1090/conm/743/14958 | Zbl:1452.15021
  • Belton, Alexander; Guillot, Dominique; Khare, Apoorva; Putinar, Mihai A Panorama of Positivity. I: Dimension Free, Analysis of Operators on Function Spaces (2019), p. 117 | DOI:10.1007/978-3-030-14640-5_5
  • Guillot, Dominique; Khare, Apoorva; Rajaratnam, Bala Preserving positivity for rank-constrained matrices, Transactions of the American Mathematical Society, Volume 369 (2017) no. 9, pp. 6105-6145 | DOI:10.1090/tran/6826 | Zbl:1366.15028
  • Belton, Alexander; Guillot, Dominique; Khare, Apoorva; Putinar, Mihai Matrix positivity preservers in fixed dimension. I, Advances in Mathematics, Volume 298 (2016), pp. 325-368 | DOI:10.1016/j.aim.2016.04.016 | Zbl:1339.15016
  • Belton, Alexander; Guillot, Dominique; Khare, Apoorva; Putinar, Mihai Matrix positivity preservers in fixed dimension, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 354 (2016) no. 2, pp. 143-148 | DOI:10.1016/j.crma.2015.11.006 | Zbl:1358.15020
  • Guillot, Dominique; Khare, Apoorva; Rajaratnam, Bala Critical exponents of graphs, Journal of Combinatorial Theory. Series A, Volume 139 (2016), pp. 30-58 | DOI:10.1016/j.jcta.2015.11.003 | Zbl:1328.05028
  • Guillot, Dominique; Khare, Apoorva; Rajaratnam, Bala Preserving positivity for matrices with sparsity constraints, Transactions of the American Mathematical Society, Volume 368 (2016) no. 12, pp. 8929-8953 | DOI:10.1090/tran6669 | Zbl:1350.15014
  • Guillot, Dominique; Rajaratnam, Bala Functions preserving positive definiteness for sparse matrices, Transactions of the American Mathematical Society, Volume 367 (2015) no. 1, pp. 627-649 | DOI:10.1090/s0002-9947-2014-06183-7 | Zbl:1305.15075
  • Menegatto, V. A.; Oliveira, C. P.; Peron, Ana P. On conditionally positive definite dot product kernels, Acta Mathematica Sinica, English Series, Volume 24 (2008) no. 7, p. 1127 | DOI:10.1007/s10114-007-6227-4
  • Bhatia, Rajendra; Elsner, Ludwig Positivity preserving Hadamard matrix functions, Positivity, Volume 11 (2007) no. 4, pp. 583-588 | DOI:10.1007/s11117-007-2104-8 | Zbl:1130.15011
  • Pinkus, Allan Strictly Hermitian positive definite functions, Journal d'Analyse Mathématique, Volume 94 (2004), pp. 293-318 | DOI:10.1007/bf02789051 | Zbl:1074.43004
  • Norvidas, Saulius Continuity of functions operating on characteristic functions, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 120 (1996) no. 1, pp. 117-125 | DOI:10.1017/s0305004100074715 | Zbl:0854.22003
  • FitzGerald, Carl H.; Micchelli, Charles A.; Pinkus, Allan Functions that preserve families of positive semidefinite matrices, Linear Algebra and its Applications, Volume 221 (1995), pp. 83-102 | DOI:10.1016/0024-3795(93)00232-o | Zbl:0852.43004
  • Ovsianas, R. Functions operating on positive definite functions, Lithuanian Mathematical Journal, Volume 33 (1993) no. 2, pp. 168-173 | DOI:10.1007/bf00975119 | Zbl:0840.43007
  • Ando, T.; Choi, M.-D. Non-Linear Completely Positive Maps, Aspects of Positivity in Functional Analysis, Proceedings of the Conference held on the Occasion of H.H. Schaefer's 60th Birthday, Volume 122 (1986), p. 3 | DOI:10.1016/s0304-0208(08)71944-3
  • Norvidas, S. Multidimensional functional calculus on characteristic functions, Lithuanian Mathematical Journal, Volume 25 (1986) no. 3, p. 260 | DOI:10.1007/bf00966745
  • Norvidas, S. T. On multivariate functional calculus on characteristic functions, Litovskiĭ Matematicheskiĭ Sbornik, Volume 25 (1985) no. 3, pp. 130-146 | Zbl:0591.43010
  • Graham, Colin C. Functional calculus and positive-definite functions, Transactions of the American Mathematical Society, Volume 231 (1977), pp. 215-231 | DOI:10.2307/1997880 | Zbl:0329.43009
  • Graham, Colin C. Functional calculus and positive-definite functions, Transactions of the American Mathematical Society, Volume 231 (1977) no. 1, p. 215 | DOI:10.1090/s0002-9947-1977-0487285-2
  • Graham, C. C. Symbolic calculus for positive definite functions, Journal of Functional Analysis, Volume 11 (1972), pp. 465-478 | DOI:10.1016/0022-1236(72)90067-5 | Zbl:0215.18503
  • Rider, Daniel Functions which operate on positive definite functions, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 69 (1971) no. 1, p. 87 | DOI:10.1017/s0305004100046454
  • Kaufman, R. On the symbolic calculus of Bernoulli convolutions, Israel Journal of Mathematics, Volume 6 (1968), pp. 30-35 | DOI:10.1007/bf02771602 | Zbl:0157.24401
  • Harzallah, Khelifa Fonctions operant sur les fonctions definies-négatives, Annales de l'Institut Fourier, Volume 17 (1967) no. 1, pp. 443-468 | DOI:10.5802/aif.263 | Zbl:0163.37201
  • Lukacs, Eugene Analytical methods in probability theory, Symposium on Probability Methods in Analysis, Volume 31 (1967), p. 208 | DOI:10.1007/bfb0061120

Cité par 26 documents. Sources : Crossref, zbMATH