The winding number on two manifolds
Annales de l'Institut Fourier, Tome 10 (1960), pp. 271-283.

On définit un homomorphisme du premier groupe d’homotopie régulier (d’après Smale) d’une surface compacte sur les entiers modulo le nombre d’Euler-Poincaré et on présente un algorithme pour calculer la valeur de cet homomorphisme pour une courbe de Jordan, dont la classe d’homotopie au sens usuel est donnée. On indique une application aux équations différentielles sur les surfaces compactes.

@article{AIF_1960__10__271_0,
     author = {Reinhart, Bruce L.},
     title = {The winding number on two manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {271--283},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {10},
     year = {1960},
     doi = {10.5802/aif.100},
     mrnumber = {22 #8517},
     zbl = {0097.16203},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.100/}
}
TY  - JOUR
AU  - Reinhart, Bruce L.
TI  - The winding number on two manifolds
JO  - Annales de l'Institut Fourier
PY  - 1960
SP  - 271
EP  - 283
VL  - 10
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.100/
DO  - 10.5802/aif.100
LA  - en
ID  - AIF_1960__10__271_0
ER  - 
%0 Journal Article
%A Reinhart, Bruce L.
%T The winding number on two manifolds
%J Annales de l'Institut Fourier
%D 1960
%P 271-283
%V 10
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.100/
%R 10.5802/aif.100
%G en
%F AIF_1960__10__271_0
Reinhart, Bruce L. The winding number on two manifolds. Annales de l'Institut Fourier, Tome 10 (1960), pp. 271-283. doi : 10.5802/aif.100. https://www.numdam.org/articles/10.5802/aif.100/

[1] L. E. J. Brouwer, Über die periodischen Transformationen der Kugel, Math. Annalen, 80 (1919), 39-41. | JFM

[2] B. Kéréjártó, Über die periodischen Transformationen der Kreisscheibe und Kugelfläche, Math. Annalen, 80 (1919), 36-38. | JFM

[3] B. L. Reinhart, Line Element Fields on the Torus, Proc. N.A.S., U.S.A., 45 (1959), 49-50. | MR | Zbl

[4] B. L. Reinhart, Line Elements on the Torus, Amer. J. Math., 81 (1959), 617-631. | MR | Zbl

[5] H. Seifert, Topologie 3 dimensionaler gefaserter Räume, Acta Math., 60 (1932), 147-238. | JFM | Zbl

[6] S. Smale, Regular Curves on Riemannian Manifolds, Trans. Amer. Math. Soc., 87 (1958), 492-512. | MR | Zbl

[7] N. E. Steenrod, Topology of Fibre Bundles, Princeton, Princeton U. Press, 1951. | MR | Zbl

[8] G. W. Whitehead, Homotopy theory, notes, M.I.T., 1953.

[9] H. Whitney, On Regular Closed Curves in the Plane, Compositio Math. 4 (1937), 276-286. | JFM | Numdam | Zbl

  • Burrin, Claire; von Essen, Flemming Windings of Prime Geodesics, International Mathematics Research Notices, Volume 2024 (2024) no. 22, p. 13931 | DOI:10.1093/imrn/rnae225
  • Musso, Emilio; Pámpano, Álvaro Closed 1/2-elasticae in the hyperbolic plane, Journal of Mathematical Analysis and Applications, Volume 527 (2023) no. 1, p. 127388 | DOI:10.1016/j.jmaa.2023.127388
  • Riso, Marzia; Nazzaro, Giacomo; Puppo, Enrico; Jacobson, Alec; Zhou, Qingnan; Pellacini, Fabio BoolSurf, ACM Transactions on Graphics, Volume 41 (2022) no. 6, p. 1 | DOI:10.1145/3550454.3555466
  • Gu, Ying; Zhao, Xuezhi Geometric intersections of loops on surfaces, Topology and its Applications, Volume 318 (2022), p. 108205 | DOI:10.1016/j.topol.2022.108205
  • Permyakov, D A Regular homotopy for immersions of graphs into surfaces, Sbornik: Mathematics, Volume 207 (2016) no. 6, p. 854 | DOI:10.1070/sm8570
  • Permyakov, Dmitrii Alekseevich Регулярная гомотопность погружений графов в поверхности, Математический сборник, Volume 207 (2016) no. 6, p. 93 | DOI:10.4213/sm8570
  • Helmuth, Tyler Ising model observables and non-backtracking walks, Journal of Mathematical Physics, Volume 55 (2014) no. 8 | DOI:10.1063/1.4881723
  • Zhang, C. Filling words in fundamental groups of Riemann surfaces, Studia Scientiarum Mathematicarum Hungarica, Volume 50 (2013) no. 1, p. 31 | DOI:10.1556/sscmath.50.2013.1.1227
  • Kudryavtseva, E. A. Connected components of spaces of Morse functions with fixed critical points, Moscow University Mathematics Bulletin, Volume 67 (2012) no. 1, p. 1 | DOI:10.3103/s0027132212010019
  • Burman, Yurii; Polyak, Michael Whitney’s formulas for curves on surfaces, Geometriae Dedicata, Volume 151 (2011) no. 1, p. 97 | DOI:10.1007/s10711-010-9521-8
  • Abouzaid, Mohammed On the Fukaya categories of higher genus surfaces, Advances in Mathematics, Volume 217 (2008) no. 3, p. 1192 | DOI:10.1016/j.aim.2007.08.011
  • Mcintyre, Margaret; Cairns, Grant A new formula for winding number, Geometriae Dedicata, Volume 46 (1993) no. 2, p. 149 | DOI:10.1007/bf01264913
  • A short biography of Bruce Reinhart, Annals of Global Analysis and Geometry, Volume 9 (1991) no. 1, p. 9 | DOI:10.1007/bf02411351
  • Cotta-Ramusino, Paolo; Rinaldi, Maurizio On the algebraic structure of link-diagrams on a 2-dimensional surface, Communications in Mathematical Physics, Volume 138 (1991) no. 1, p. 137 | DOI:10.1007/bf02099672
  • Cotta-Ramusino, Paolo; Rinaldi, Maurizio Links in a thickened surface, Rendiconti del Seminario Matematico e Fisico di Milano, Volume 61 (1991) no. 1, p. 125 | DOI:10.1007/bf02925202
  • Johnson, Dennis An abelian quotient of the mapping class groupI g, Mathematische Annalen, Volume 249 (1980) no. 3, p. 225 | DOI:10.1007/bf01363897
  • Davis, Arlo; Wilson, F. Wesley Vector fields tangent to foliations I: Reeb foliations, Journal of Differential Equations, Volume 11 (1972) no. 3, p. 491 | DOI:10.1016/0022-0396(72)90061-7
  • Chillingworth, D. R. J. Winding numbers on surfaces, I, Mathematische Annalen, Volume 196 (1972) no. 3, p. 218 | DOI:10.1007/bf01428050
  • Chillingworth, D. R. J. Winding numbers on surfaces. II, Mathematische Annalen, Volume 199 (1972) no. 3, p. 131 | DOI:10.1007/bf01431419

Cité par 19 documents. Sources : Crossref