Les scientifiques construisent des modèles pour connaître le monde. On suppose, en général, que les mathématiciens qui font des mathématiques pures n’ont pas recours à de tels modèles. En mathématiques pures, on prouve des théorèmes au sujet d’entités mathématiques comme les ensembles, les nombres, les figures géométriques, etc., on calcule des fonctions et on résout des équations. Dans cet article, je présente certains modèles construits par des mathématiciens qui permettent d’étudier les composantes fondamentales des espaces et, plus généralement, des formes mathématiques. Cet article explore principalement la théorie de l’homotopie, secteur des mathématiques où les modèles occupent une place centrale. Je soutiens que les mathématiciens introduisent des modèles au sens courant du terme et je présente une première classification de ces modèles.
Scientists use models to know the world. It is usually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely homotopy theory. I argue that mathematicians introduce genuine models and I offer a rough classification of these models.
@article{AFST_2013_6_22_5_969_0, author = {Marquis, Jean-Pierre}, title = {Mathematical {Models} of {Abstract} {Systems:} {Knowing} abstract geometric forms}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {969--1016}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 22}, number = {5}, year = {2013}, doi = {10.5802/afst.1393}, zbl = {1286.00041}, mrnumber = {3154584}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1393/} }
TY - JOUR AU - Marquis, Jean-Pierre TI - Mathematical Models of Abstract Systems: Knowing abstract geometric forms JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2013 SP - 969 EP - 1016 VL - 22 IS - 5 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1393/ DO - 10.5802/afst.1393 LA - en ID - AFST_2013_6_22_5_969_0 ER -
%0 Journal Article %A Marquis, Jean-Pierre %T Mathematical Models of Abstract Systems: Knowing abstract geometric forms %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2013 %P 969-1016 %V 22 %N 5 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1393/ %R 10.5802/afst.1393 %G en %F AFST_2013_6_22_5_969_0
Marquis, Jean-Pierre. Mathematical Models of Abstract Systems: Knowing abstract geometric forms. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial à l’occasion du Workshop Homotopie, 20-21 octobre 2011, Institut mathématique de Toulouse, Tome 22 (2013) no. 5, pp. 969-1016. doi : 10.5802/afst.1393. http://www.numdam.org/articles/10.5802/afst.1393/
[1] Publications of Witold Hurewicz.— In Collected works of Witold Hurewicz, pages xlvii-lii, Amer. Math. Soc., Providence, RI (1995). | MR | Zbl
[2] Awodey (S.) and Warren (M. A.).— Homotopy theoretic models of identity types, Math. Proc. Cambridge Philos. Soc., 146(1), p. 45-55 (2009). | MR | Zbl
[3] Batanin (M. A.).— Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math., 136(1), p. 39-103 (1998). | MR | Zbl
[4] Baues (H. J.).— Algebraic homotopy, volume 15 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1989). | MR | Zbl
[5] Baues (H. J.).— Homotopy type and homology, Clarendon Press, Oxford (1996), Oxford Science Publications. | MR | Zbl
[6] Baues (H. J.).— Combinatorial foundation of homology and homotopy, Springer Monographs in Mathematics. Springer-Verlag, Berlin (1999). Applications to spaces, diagrams, transformation groups, compactifications, differential algebras, algebraic theories, simplicial objects, and resolutions. | MR | Zbl
[7] Baues (H. J.).— Atoms of topology, Jahresber. Deutsch. Math.-Verein., 104(4), p. 147-164 (2002). | MR | Zbl
[8] Baues (H. J.).— The homotopy category of simply connected 4-manifolds, volume 297 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003). With an appendix On the cohomology of the category nil" by Teimuraz Pirashvili. | MR | Zbl
[9] Benkhalifa (M.).— The certain exact sequence of Whitehead (J. H. C.) and the classification of homotopy types of CW-complexes. Topology Appl., 157(14), p. 2240-2250 (2010). | MR | Zbl
[10] Berger (C.).— Double loop spaces, braided monoidal categories and algebraic 3-type of space. In Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), volume 227 of Contemp. Math., p. 49-66. Amer. Math. Soc., Providence, RI (1999). | MR | Zbl
[11] Bergner (J. E.).— Three models for the homotopy theory of homotopy theories. Topology, 46(4), p. 397-436 (2007). | MR | Zbl
[12] Biedermann (G.).— On the homotopy theory of n-types. Homology, Homotopy Appl., 10(1), p. 305-325 (2008). | MR | Zbl
[13] Bourbaki (N.).— General topology. Chapters 1-4. Elements of Mathematics (Berlin). Springer-Verlag, Berlin (1998). Translated from the French, Reprint of the 1989 English translation. | MR | Zbl
[14] Bourbaki (N.).— General topology. Chapters 5-10. Elements of Mathematics (Berlin). Springer-Verlag, Berlin (1998). Translated from the French, Reprint of the 1989 English translation. | MR | Zbl
[15] Brouwer (L. E. J.).— Collected works, Vol. 2. North-Holland Publishing Co., Amsterdam (1976). Geometry, analysis, topology and mechanics, Edited by Hans Freudenthal. | MR
[16] Brown Jr. (E. H.).— Abstract homotopy theory. Trans. Amer. Math. Soc., 119, p. 79-85 (1965). | MR | Zbl
[17] Brown (K. S.).— Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc., 186, p. 419-458 (1974). | MR | Zbl
[18] Brown (R.).— From groups to groupoids: a brief survey. Bull. London Math. Soc., 19(2), p. 113-134 (1987). | MR | Zbl
[19] Brown (R.).— Computing homotopy types using crossed -cubes of groups. In Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990), volume 175 of London Math. Soc. Lecture Note Ser., pages 187-210. Cambridge Univ. Press, Cambridge (1992). | MR | Zbl
[20] Brown (R.).— Groupoids and crossed objects in algebraic topology. Homology Homotopy Appl., 1, p. 1-78 (electronic) (1999). | MR | Zbl
[21] Brown (R.).— Topology and Groupoids. Booksurge (2006). | MR | Zbl
[22] Brown (R.).— A new higher homotopy groupoid: the fundamental globular -groupoid of a filtered space. Homology, Homotopy Appl., 10(1), p. 327-343 (2008). | MR | Zbl
[23] Brown (R.) and Gilbert (N. D.).— Algebraic models of 3-types and automorphism structures for crossed modules. Proc. London Math. Soc. (3), 59(1), p. 51-73 (1989). | MR | Zbl
[24] Brown (R.) and Higgins (P. J.).— The classifying space of a crossed complex. Math. Proc. Cambridge Philos. Soc., 110(1), p. 95-120 (1991). | MR | Zbl
[25] Bunge (M. A.).— Treatise on basic philosophy: Volume 7-epistemology & methodology iii: Philosophy of science and technology – part ii: Life science, social science and technology (1985).
[26] Cisinski (D.C.).— Presheaves as models for homotopy types. Asterisque (2006). | Numdam | MR | Zbl
[27] Cisinski (D.C.).— Batanin higher groupoids and homotopy types. In Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pages 171-186. Amer. Math. Soc., Providence, RI (2007). | MR | Zbl
[28] Contessa (G.).— Scientific models and fictional objects. Synthese, 172(2), p. 215-229 (2010). | MR
[29] Dieudonné (J.).— A history of algebraic and differential topology, 1900-1960. Birkhäuser, Boston (1989). | MR | Zbl
[30] Dugger (D.).— Universal homotopy theories. Adv. Math., 164(1),144-176 (2001). | MR | Zbl
[31] Dwyer (W. G.), Hirschhorn (P. S.), Kan (D. M.), and Smith (J. H.).— Homotopy Limit Functors on Model Categories and Homotopical Categories, volume 113 of Mathematical Surveys and Monographs. American Mathematical Society, Providence: Rhodes Island (2004). | MR | Zbl
[32] Dwyer (W. G.), Spalinski (J.).— Homotopy theories and model categories. In I. M. James, editor, Handbook of Algebraic Topology, p. 73-126. Elsevier, Amsterdam (1995). | MR | Zbl
[33] Eilenberg (S.) and Mac Lane (S.).— A general theory of natural equivalences. Trans. Amer. Math. Soc., 58, p. 231-294 (1945). | MR | Zbl
[34] Eilenberg (S.) and Steenrod (N.).— Foundations of algebraic topology. Princeton University Press, Princeton, New Jersey (1952). | MR | Zbl
[35] Fox (R. H.).— On homotopy type and deformation retracts. Ann. of Math. (2), 44, p. 40-50 (1943). | MR | Zbl
[36] Fox (R. H.).— On the Lusternik-Schnirelmann category. Ann. of Math. (2), 42, p. 333-370 (1941). | MR | Zbl
[37] Freyd (P.).— Homotopy is not concrete. Reprints in Theory and Applications of Categories, (6), p. 1-10 (electronic) (2004). | MR | Zbl
[38] Frigg (R.).— Models and fiction. Synthese, 172(2), p. 251-268 (2010).
[39] Giere (R. N.).— Using models to represent reality. In Model-based reasoning in scientific discovery, p. 41-57. Springer (1999).
[40] Goerss (P.) and Jardine (J. F.).— Simplicial Homotopy Theory. Progress in Mathematics. Birkhäuser, Boston (1999). | MR | Zbl
[41] Hatcher (A.).— Algebraic Topology. Cambridge University Press, Cambridge (2002). | MR | Zbl
[42] Heller (A.).— Completions in abstract homotopy theory. Trans. Amer. Math. Soc., 147, p. 573-602 (1970). | MR | Zbl
[43] Hess (K.).— Model categories in algebraic topology. Applied Categorical Structures, 10, p. 195-220 (2002). | MR | Zbl
[44] Hovey (M.).— Model Categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1999). | MR | Zbl
[45] James (I. M.).— From combinatorial topology to algebraic topology. In History of topology, p. 561-573. North-Holland, Amsterdam (1999). | MR | Zbl
[46] Jardine (J. F.).— Homotopy and homotopical algebra. In M. Hazewinkel, editor, Handbook of Algebra, volume 1, p. 639-669. Elsevier (1996). | MR | Zbl
[47] Jardine (J. F.).— Categorical homotopy theory. Homology Homotopy and Applications, 8, 71-144 (2006). | MR | Zbl
[48] Joyal (A.).— Notes on quasi-categories.
[49] Joyal (A.) and Kock (J.).— Weak units and homotopy 3-types. In Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., p. 257-276. Amer. Math. Soc., Providence, RI (2007). | MR | Zbl
[50] Kan (D. M.).— Abstract homotopy. I. Proc. Nat. Acad. Sci. U.S.A., 41, p. 1092-1096 (1955). | MR | Zbl
[51] Kan (D. M.).— Abstract homotopy. II. Proc. Nat. Acad. Sci. U.S.A., 42, p. 255-258) (1956). | MR | Zbl
[52] Kan (D. M.).— Abstract homotopy. III. Proc. Nat. Acad. Sci. U.S.A., 42, p. 419-421 (1956). | MR | Zbl
[53] Kan (D. M.).— Abstract homotopy. IV. Proc. Nat. Acad. Sci. U.S.A., 42, p. 542-544 (1956). | MR | Zbl
[54] Kapranov (M. M.), Voevodsky (V. A.).— 1-groupoids and homotopy types. Cahiers Topologie Géom. Différentielle Catég., 32(1), p. 29-46 (1991). International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990). | Numdam | MR | Zbl
[55] L. Kelley (J. L.).— General topology. D. Van Nostrand Company, Inc., Toronto-New York-London (1955). | MR | Zbl
[56] Kroes (P. A.).— Technical artefacts: creations of mind and matter: a philosophy of engineering design, volume 6. Springer (2012).
[57] Kroes (P. A.), Meijers (A. W. M.)pointir The dual nature of technical artefacts. Studies in History and Philosophy of Science, 37(1), p. 1 (2006).
[58] Krömer (R.).— Tool and object, volume 32 of Science Networks. Historical Studies. Birkhäuser Verlag, Basel (2007). A history and philosophy of category theory. | MR | Zbl
[59] Leng (M.).— Mathematics and reality. Oxford University Press, Oxford (2010). | MR | Zbl
[60] Mac Lane (S.).— Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition (1998). | MR | Zbl
[61] Mac Lane (S.) and Whitehead (J. H. C.).— On the 3-type of a complex. Proc. Nat. Acad. Sci. U. S. A., 36, p. 41-48 (1950). | MR | Zbl
[62] Maltsiniotis (G.).— La théorie de l’homotopie de Grothendieck. Astérisque, (301), p. vi+140 (2005). | Numdam | MR | Zbl
[63] Marquis (J.-P.).— A path to the epistemology of mathematics: homotopy theory. In José Ferreirós and Jeremy J Gray, editors, The Architecture of Modern Mathematics, p. 239-260. Oxford Univ. Press (2006). | MR | Zbl
[64] Marquis (J.-P.).— From a geometrical point of view, volume 14 of Logic, Epistemology, and the Unity of Science. Springer, Dordrecht (2009). A study of the history and philosophy of category theory. | MR | Zbl
[65] Marquis (J.-P.).— Mario bunge’s philosophy of mathematics: An appraisal. Science & Education, 21(10), p. 1567-1594 (2012).
[66] Morel (F.), Voevodsky (V.).— -homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90), p. 45-143 (1999). | Numdam | MR | Zbl
[67] Morgan (M.S.) and M. Morrison (M.).— Models As Mediators: Perspectives on Natural and Social Science. Ideas in Context. Cambridge University Press (1999).
[68] Mumford (D.).— Trends in the profession of mathematics. Mitt. Dtsch. Math.-Ver., (2), p. 25-29 (1998). | MR
[69] Munkres (J. R.).— Topology: a first course. Prentice-Hall Inc., Englewood Cliffs, N.J. (1975). | MR | Zbl
[70] Noohi (B.).— Notes on 2-groupoids, 2-groups and crossed-modules. Homotopy, Homology, and Applications, 9(1), p. 75-106 (2007). | MR | Zbl
[71] Paoli (S.).— Semistrict models of connected 3-types and Tamsamani’s weak 3-groupoids. J. Pure Appl. Algebra, 211(3), p. 801-820 (2007). | MR | Zbl
[72] Paoli (S.).— Internal categorical structures in homotopical algebra. In John C. Baez et al., editor, Towards higher categories, volume 152 of The IMA Volumes in Mathematics and its Applications, p. 85-103, Berlin (2010). Springer. | MR | Zbl
[73] Porter (T.).— Abstract homotopy theory in procategories. Cahiers Topologie Géom. Différentielle, 17(2), p. 113-124 (1976). | Numdam | MR | Zbl
[74] Porter (T.).— Abstract homotopy theory: the interaction of category theory and homotopy theory. Cubo Mat. Educ., 5(1), p. 115-165 (2003). | MR
[75] Quillen (D. G.).— Homotopical algebra. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin (1967). | MR | Zbl
[76] Quillen (D. G.).— Rational homotopy theory. Ann. of Math. (2), 90, p. 205-295 (1969). | MR | Zbl
[77] Ritchey (T.).— Outline for a morphology of modelling methods. Acta Morphologica Generalis AMG Vol, 1(1), p. 1012 (2012).
[78] Rotman (J. J.).— An Introduction to Algebraic Topology, volume 119 of Graduate Texts in Mathematics. Springer-Verlag, New York (1988). | MR | Zbl
[79] Seifert (H.) and Threlfall (W.).— Seifert and Threlfall: a textbook of topology, volume 89 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). Translated from the German edition of 1934 by Michael A. Goldman, With a preface by Joan S. Birman, With Topology of 3-dimensional fibered spaces" by Seifert, Translated from the German by Wolfgang Heil. | MR | Zbl
[80] Shitanda (Y.).— Abstract homotopy theory and homotopy theory of functor category. Hiroshima Math. J., 19(3), p. 477-497 (1989). | MR | Zbl
[81] Simpson (C. T.).— Homotopy theory of higher categories. 2010.
[82] Street (R.).— Weak omega-categories. In Diagrammatic morphisms and applications (San Francisco, CA, 2000), volume 318 of Contemp. Math., pages 207-213. Amer. Math. Soc., Providence, RI (2003). | MR | Zbl
[83] Ström (A.).— The homotopy category is a homotopy category. Arch. Math. (Basel), 23, p. 435-441 (1972). | MR | Zbl
[84] Suárez (M.).— Fictions in Science: Philosophical Essays on Modeling and Idealization. Routledge Studies in the Philosophy of Science. Routledge (2009).
[85] Thomas (R. S. D.).— Mathematics and fiction. I. Identification. Logique et Anal. (N.S.), 43(171-172), p. 301-340 (2001) (2000). | MR | Zbl
[86] Thomas (R. S. D.).— Mathematics and fiction. II. Analogy. Logique et Anal. (N.S.), 45(177-178), p. 185-228 (2002). | MR | Zbl
[87] Toon (A.).— The ontology of theoretical modelling: Models as makebelieve. Synthese, 172(2), p. 301-315 (2010).
[88] Vaihinger (H.).— Philosophy of “As If”. K. Paul (1924).
[89] Verity (D.).— Weak complicial sets. II. Nerves of complicial Graycategories. In Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., p. 441-467. Amer. Math. Soc., Providence, RI (2007). | MR | Zbl
[90] Verity (D.).— Complicial sets characterising the simplicial nerves of strict -categories. Mem. Amer. Math. Soc., 193(905), p. xvi+184 (2008). | MR | Zbl
[91] Voevodsky (V.).— -homotopy theory. In Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), number Extra Vol. I, p. 579-604 (electronic) (1998). | MR | Zbl
[92] Voevodsky (V.).— Univalent foundations project (2010).
[93] Whitehead (J. H. C.).— Combinatorial homotopy. I. Bull. Amer. Math. Soc., 55, p. 213-245 (1949). | MR | Zbl
[94] Whitehead (J. H. C.).— Combinatorial homotopy. II. Bull. Amer. Math. Soc., 55, p. 453-496 (1949). | MR | Zbl
Cité par Sources :