On prouve une caractérisation des ensembles avec périmètre fini et des fonctions à variation bornée en termes du comportement du semi-groupe de la chaleur dans
We prove a characterisation of sets with finite perimeter and
@article{AFST_2007_6_16_1_125_0, author = {Miranda, Michele Jr and Pallara, Diego and Paronetto, Fabio and Preunkert, Marc}, title = {Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {125--145}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 16}, number = {1}, year = {2007}, doi = {10.5802/afst.1142}, mrnumber = {2325595}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1142/} }
TY - JOUR AU - Miranda, Michele Jr AU - Pallara, Diego AU - Paronetto, Fabio AU - Preunkert, Marc TI - Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2007 SP - 125 EP - 145 VL - 16 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1142/ DO - 10.5802/afst.1142 LA - en ID - AFST_2007_6_16_1_125_0 ER -
%0 Journal Article %A Miranda, Michele Jr %A Pallara, Diego %A Paronetto, Fabio %A Preunkert, Marc %T Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2007 %P 125-145 %V 16 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1142/ %R 10.5802/afst.1142 %G en %F AFST_2007_6_16_1_125_0
Miranda, Michele Jr; Pallara, Diego; Paronetto, Fabio; Preunkert, Marc. Short-time heat flow and functions of bounded variation in $\mathbf{R}^N$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 16 (2007) no. 1, pp. 125-145. doi : 10.5802/afst.1142. https://www.numdam.org/articles/10.5802/afst.1142/
[1] L. Ambrosio.— Transport equation and Cauchy problem for
[2] L. Ambrosio, N. Fusco, D. Pallara.— Functions of Bounded Variation and Free Discontinuity problems, Oxford U. P., 2000. | MR | Zbl
[3] H. Brézis.— How to recognize constant functions. Connections with Sobolev spaces,Russian Math. Surveys 57, p. 693-708 (2002). | MR | Zbl
[4] J. Dávila.— On an open question about functions of bounded variation,Calc. Var. 15, p. 519-527 (2002). | MR | Zbl
[5] E. De Giorgi.— Su una teoria generale della misura
[6] E. De Giorgi.— Nuovi teoremi relativi alle misure
[7] P. Gilkey, M. van den Berg.— Heat content asymptotics of a Riemannian manifold with boundary, J. Funct. Anal. 120, p. 48-71 (1994). | MR | Zbl
[8] M. Ledoux.— Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space, Bull. Sci. Math. 118, p. 485-510 (1994). | MR | Zbl
[9] E.H. Lieb, M. Loss.— Analysis, Second edition, Amer. Math. Soc., 2001 | MR | Zbl
[10] M. Miranda (Jr), D. Pallara, F. Paronetto, M. Preunkert.— Heat Semigroup and
[11] K. Pietruska-Paluba.— Heat kernels on metric spaces and a characterisation of constant functions, Manuscripta Math. 115 , p. 389–399 (2004). | MR | Zbl
[12] M. Preunkert.— A semigroup version of the isoperimetric inequality, Semigroup Forum 68, p. 233-245 (2004). | MR | Zbl
[13] M. H. Taibleson.— On the theory of Lipschitz spaces of distributions on Euclidean
[14] H. Triebel.— Interpolation theory, function spaces, differential operators, North-Holland 1978. | MR | Zbl
[15] J. Wloka.— Partial Differential Equations, Cambridge U. P., 1987. | MR | Zbl
- Relative heat content asymptotics for sub-Riemannian manifolds, Analysis PDE, Volume 17 (2024) no. 9, p. 2997 | DOI:10.2140/apde.2024.17.2997
- A prediction-correction based iterative convolution-thresholding method for topology optimization of heat transfer problems, Journal of Computational Physics, Volume 511 (2024), p. 113119 | DOI:10.1016/j.jcp.2024.113119
- A New Proof of the Geometric Sobolev Embedding for Generalised Kolmogorov Operators, Kolmogorov Operators and Their Applications, Volume 56 (2024), p. 117 | DOI:10.1007/978-981-97-0225-1_5
- Few‐shot segmentation framework for lung nodules via an optimized active contour model, Medical Physics, Volume 51 (2024) no. 4, p. 2788 | DOI:10.1002/mp.16933
- Geometric Topics Related to Besov type Spaces on the Grushin Setting, Potential Analysis (2024) | DOI:10.1007/s11118-024-10187-9
- Assembling a Learnable Mumford–Shah Type Model with Multigrid Technique for Image Segmentation, SIAM Journal on Imaging Sciences, Volume 17 (2024) no. 2, p. 1007 | DOI:10.1137/23m1577663
- Yet another heat semigroup characterization of BV functions on Riemannian manifolds, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 32 (2023) no. 3, p. 577 | DOI:10.5802/afst.1745
- Asymptotic analysis of a family of non-local functionals on sets, ESAIM: Control, Optimisation and Calculus of Variations, Volume 29 (2023), p. 1 | DOI:10.1051/cocv/2022080
- Spectral Heat Content for Time-Changed Killed Brownian Motions, Journal of Theoretical Probability, Volume 36 (2023) no. 2, p. 1148 | DOI:10.1007/s10959-022-01188-8
- Large Data Limit of the MBO Scheme for Data Clustering, PAMM, Volume 22 (2023) no. 1 | DOI:10.1002/pamm.202200308
- The Heat Flow in Random Walk Spaces, Variational and Diffusion Problems in Random Walk Spaces, Volume 103 (2023), p. 59 | DOI:10.1007/978-3-031-33584-6_2
- A new binary representation method for shape convexity and application to image segmentation, Analysis and Applications, Volume 20 (2022) no. 03, p. 465 | DOI:10.1142/s0219530521500238
- Characterizations of sets of finite perimeter using the Ornstein-Uhlenbeck semigroup in the Gauss space, Bulletin des Sciences Mathématiques, Volume 174 (2022), p. 103090 | DOI:10.1016/j.bulsci.2021.103090
- A consistent approximation of the total perimeter functional for topology optimization algorithms, ESAIM: Control, Optimisation and Calculus of Variations, Volume 28 (2022), p. 18 | DOI:10.1051/cocv/2022005
- Deep Convolutional Neural Networks with Spatial Regularization, Volume and Star-Shape Priors for Image Segmentation, Journal of Mathematical Imaging and Vision, Volume 64 (2022) no. 6, p. 625 | DOI:10.1007/s10851-022-01087-x
- The iterative convolution–thresholding method (ICTM) for image segmentation, Pattern Recognition, Volume 130 (2022), p. 108794 | DOI:10.1016/j.patcog.2022.108794
- An Efficient Unconditionally Stable Method for Dirichlet Partitions in Arbitrary Domains, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 4, p. A2061 | DOI:10.1137/21m1443406
- Weak Solutions to the Muskat Problem with Surface Tension Via Optimal Transport, Archive for Rational Mechanics and Analysis, Volume 239 (2021) no. 1, p. 389 | DOI:10.1007/s00205-020-01579-3
- An Efficient Iterative Method for Reconstructing Surface from Point Clouds, Journal of Scientific Computing, Volume 87 (2021) no. 1 | DOI:10.1007/s10915-021-01457-4
- Shape prior generation and geodesic active contour interactive iterating algorithm (SPACIAL): fully automatic segmentation for 3D lumen in intravascular optical coherence tomography images, Medical Physics, Volume 48 (2021) no. 11, p. 7099 | DOI:10.1002/mp.15201
- A Characteristic Function-Based Algorithm for Geodesic Active Contours, SIAM Journal on Imaging Sciences, Volume 14 (2021) no. 3, p. 1184 | DOI:10.1137/20m1382817
- Short-Time Heat Content Asymptotics via the Wave and Eikonal Equations, The Journal of Geometric Analysis, Volume 31 (2021) no. 2, p. 2172 | DOI:10.1007/s12220-020-00416-z
- On the heat content for the Poisson kernel over the unit ball in the euclidean space, Bulletin of the London Mathematical Society, Volume 52 (2020) no. 6, p. 1093 | DOI:10.1112/blms.12384
- Brakke’s inequality for the thresholding scheme, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1 | DOI:10.1007/s00526-020-1696-8
- Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities, Journal of Functional Analysis, Volume 278 (2020) no. 11, p. 108459 | DOI:10.1016/j.jfa.2020.108459
- Nonlocal isoperimetric inequalities for Kolmogorov-Fokker-Planck operators, Journal of Functional Analysis, Volume 279 (2020) no. 3, p. 108591 | DOI:10.1016/j.jfa.2020.108591
- Active contour regularized semi-supervised learning for COVID-19 CT infection segmentation with limited annotations, Physics in Medicine Biology, Volume 65 (2020) no. 22, p. 225034 | DOI:10.1088/1361-6560/abc04e
- Active contours driven by Gaussian function and adaptive-scale local correntropy-based K-means clustering for fast image segmentation, Signal Processing, Volume 174 (2020), p. 107625 | DOI:10.1016/j.sigpro.2020.107625
- A Simplified Threshold Dynamics Algorithm for Isotropic Surface Energies, Journal of Scientific Computing, Volume 79 (2019) no. 1, p. 648 | DOI:10.1007/s10915-018-0866-8
- Spectral heat content for Lévy processes, Mathematische Nachrichten, Volume 292 (2019) no. 4, p. 805 | DOI:10.1002/mana.201800035
- Dynamics and stationary configurations of heterogeneous foams, PLOS ONE, Volume 14 (2019) no. 4, p. e0215836 | DOI:10.1371/journal.pone.0215836
- Fractional Laplacians, perimeters and heat semigroups in Carnot groups, Discrete Continuous Dynamical Systems - S, Volume 11 (2018) no. 3, p. 477 | DOI:10.3934/dcdss.2018026
- Heat Content in Non-compact Riemannian Manifolds, Integral Equations and Operator Theory, Volume 90 (2018) no. 1 | DOI:10.1007/s00020-018-2440-z
- Gaussian noise sensitivity and Fourier tails, Israel Journal of Mathematics, Volume 225 (2018) no. 1, p. 71 | DOI:10.1007/s11856-018-1646-8
- The Heat Content for Nonlocal Diffusion with Non-singular Kernels, Advanced Nonlinear Studies, Volume 17 (2017) no. 2, p. 255 | DOI:10.1515/ans-2017-0005
- An efficient threshold dynamics method for wetting on rough surfaces, Journal of Computational Physics, Volume 330 (2017), p. 510 | DOI:10.1016/j.jcp.2016.11.008
- Kernels with prescribed surface tension mobility for threshold dynamics schemes, Journal of Computational Physics, Volume 337 (2017), p. 62 | DOI:10.1016/j.jcp.2017.02.023
- Heat content for convolution semigroups, Journal of Mathematical Analysis and Applications, Volume 446 (2017) no. 2, p. 1393 | DOI:10.1016/j.jmaa.2016.09.051
- Convolution Kernels and Stability of Threshold Dynamics Methods, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 5, p. 2123 | DOI:10.1137/16m1087552
- A Fast MBO Scheme for Multiclass Data Classification, Scale Space and Variational Methods in Computer Vision, Volume 10302 (2017), p. 335 | DOI:10.1007/978-3-319-58771-4_27
- Heat Content for Stable Processes in Domains of $\mathbb {R}^d$, The Journal of Geometric Analysis, Volume 27 (2017) no. 1, p. 492 | DOI:10.1007/s12220-016-9688-9
- Convergence of the thresholding scheme for multi-phase mean-curvature flow, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 5 | DOI:10.1007/s00526-016-1053-0
- Heat content estimates over sets of finite perimeter, Journal of Mathematical Analysis and Applications, Volume 441 (2016) no. 1, p. 104 | DOI:10.1016/j.jmaa.2016.03.087
- Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces, Potential Analysis, Volume 45 (2016) no. 4, p. 609 | DOI:10.1007/s11118-016-9560-3
- On the Heat Content of a Polygon, The Journal of Geometric Analysis, Volume 26 (2016) no. 3, p. 2231 | DOI:10.1007/s12220-015-9626-2
- Threshold Dynamics for Networks with Arbitrary Surface Tensions, Communications on Pure and Applied Mathematics, Volume 68 (2015) no. 5, p. 808 | DOI:10.1002/cpa.21527
- Uniform bounds for the heat content of open sets in Euclidean space, Differential Geometry and its Applications, Volume 40 (2015), p. 67 | DOI:10.1016/j.difgeo.2015.01.010
- Heat Content with Singular Initial Temperature and Singular Specific Heat, Potential Analysis, Volume 42 (2015) no. 1, p. 1 | DOI:10.1007/s11118-014-9422-9
- Heat Flow Out of a Compact Manifold, The Journal of Geometric Analysis, Volume 25 (2015) no. 3, p. 1576 | DOI:10.1007/s12220-014-9485-2
- Geometric properties of the heat content, Manuscripta Mathematica, Volume 140 (2013) no. 3-4, p. 497 | DOI:10.1007/s00229-012-0550-5
- Heat Flow and Perimeter in $\boldsymbol{{\mathbb{R}}^m}$, Potential Analysis, Volume 39 (2013) no. 4, p. 369 | DOI:10.1007/s11118-013-9335-z
- Two Characterization of BV Functions on Carnot Groups via the Heat Semigroup, International Mathematics Research Notices, Volume 2012 (2012) no. 17, p. 3845 | DOI:10.1093/imrn/rnr170
- BV functions and parabolic initial boundary value problems on domains, Annali di Matematica Pura ed Applicata, Volume 188 (2009) no. 2 | DOI:10.1007/s10231-008-0076-3
- Heat semigroup and functions of bounded variation on Riemannian manifolds, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2007 (2007) no. 613 | DOI:10.1515/crelle.2007.093
Cité par 54 documents. Sources : Crossref