Nous étudions l’extension d’inégalités de type Prékopa- Leindler au cas d’une variété riemannienne
We investigate Prékopa-Leindler type inequalities on a Riemannian manifold
@article{AFST_2006_6_15_4_613_0, author = {Cordero-Erausquin, Dario and McCann, Robert J. and Schmuckenschl\"ager, Michael}, title = {Pr\'ekopa{\textendash}Leindler type inequalities on {Riemannian} manifolds, {Jacobi} fields, and optimal transport}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {613--635}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {4}, year = {2006}, doi = {10.5802/afst.1132}, zbl = {1125.58007}, mrnumber = {2295207}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1132/} }
TY - JOUR AU - Cordero-Erausquin, Dario AU - McCann, Robert J. AU - Schmuckenschläger, Michael TI - Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 613 EP - 635 VL - 15 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1132/ DO - 10.5802/afst.1132 LA - en ID - AFST_2006_6_15_4_613_0 ER -
%0 Journal Article %A Cordero-Erausquin, Dario %A McCann, Robert J. %A Schmuckenschläger, Michael %T Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 613-635 %V 15 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1132/ %R 10.5802/afst.1132 %G en %F AFST_2006_6_15_4_613_0
Cordero-Erausquin, Dario; McCann, Robert J.; Schmuckenschläger, Michael. Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 4, pp. 613-635. doi : 10.5802/afst.1132. https://www.numdam.org/articles/10.5802/afst.1132/
[1] A remarkable measure preserving diffeomorphism between two convex bodies in
[2] Gradient flows with metric and differentiable structures,and applications to the Wasserstein space (To appear in the Academy of Lincei proceedings on “Nonlinear evolution equations”, Rome) | Zbl
[3] Séminaire de Probabilités, Diffusions hypercontractives (Lecture Notes in Math), Volume 1123, Springer (1985), pp. 177-206 | Numdam | MR | Zbl
[4] An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ. (1997), pp. 1-58 | MR | Zbl
[5] On a reverse form of the Brascamp-Lieb inequality, Invent. Math., Volume 134 (1998) no. 2, pp. 335-361 | MR | Zbl
[6] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., Volume 10 (2000), pp. 1028-1052 | MR | Zbl
[7] Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl., Volume 80 (2001) no. 7, pp. 669-696 | MR | Zbl
[8] Convex set functions in
[9] On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Funct. Anal., Volume 22 (1976), pp. 366-389 | MR | Zbl
[10] Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., Volume 44 (1991), pp. 375-417 | MR | Zbl
[11] Contractions in the
[12] Riemannian Geometry—a Modern Introduction, Cambridge Tracts in Math, Volume 108 (1993) | MR | Zbl
[13] Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal., Volume 161 (2002) no. 257–269 | MR | Zbl
[14] A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., Volume 146 (2001), pp. 219-257 | MR | Zbl
[15] A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., Volume 182 (2004) no. 2, pp. 307-332 | MR | Zbl
[16] Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal. (1980) | MR | Zbl
[17] Riemannian Geometry, Springer-Verlag, 1990 | MR | Zbl
[18] The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., Volume 39 (2002) no. 3, pp. 355-405 | MR | Zbl
[19] A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983), pp. 843-854 | MR | Zbl
[20] Contributions to the theory of convex bodies, Michigan Math. J., Volume 4 (1957), pp. 39-52 | MR | Zbl
[21] Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, Volume 33 (1999), pp. 120-216 | Numdam | MR | Zbl
[22] Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena and Scaling in Mathematical Models, Bonn (2003)
[23] The concentration of measure phenomenon, American Mathematical Society, Providence, RI, 2001 | MR | Zbl
[24] On a certain converse of Hölder’s inequality, Acta Sci. Math., Volume 33 (1972), pp. 217-233 | MR | Zbl
[25] Ricci curvature for metric-measure spaces via optimal transport (preprint)
[26] Balls have the worst best Sobolev inequality (preprint) | Zbl
[27] Some deviation inequalities, Geom. Funct. Anal., Volume 1 (1991), pp. 188-197 | MR | Zbl
[28] Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, Séminaire Bourbaki (2003) | Numdam | MR | Zbl
[29] A Convexity Principle for Interacting Gases and Equilibrium Crystals, Princeton University (1994) (Ph. D. Thesis)
[30] Existence and uniqueness of monotone measure-preserving maps, Duke. Math. J., Volume 80 (1995), pp. 309-323 | MR | Zbl
[31] A convexity principle for interacting gases, Adv. Math., Volume 128 (1997), pp. 153-179 | MR | Zbl
[32] Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001) no. 3, pp. 589-608 | MR | Zbl
[33] Asymptotic theory of finite-dimensional normed spaces, Springer-Verlag, Berlin, 1986 | MR
[34] The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1-2, pp. 101-174 | MR | Zbl
[35] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000), pp. 361-400 | MR | Zbl
[36] Logarithmic concave measures with application to stochastic programming, Acta Sci. Math., Volume 32 (1971), pp. 301-315 | MR | Zbl
[37] On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343 | MR | Zbl
[38] A concentration of measure phenomenon on uniformly convex bodies, GAFA Seminar (1992-1994), Birkaäuser (1995), pp. 275-287 | MR | Zbl
[39] Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[40] Convex functionals of probability measures and nonlinear diffusions, J. Math. Pures Appl., Volume 84 (2005) | MR | Zbl
[41] Transport inequalities, gradient estimates, entropy and Ricci curvature, Comm. Pure Appl. Math., Volume 58 (2005), pp. 923-940 | MR | Zbl
[42] Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 11 (1994), pp. 411-425 | Numdam | MR | Zbl
[43] Graduate Studies in Math., Topics in Optimal Transportation, Volume 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
- Modified Brascamp-Lieb inequalities and log-Sobolev inequalities for one-dimensional log-concave measure, Acta Mathematica Scientia, Volume 45 (2025) no. 1, p. 104 | DOI:10.1007/s10473-025-0108-8
- Sharp log-Sobolev inequalities in CD(0,N) spaces with applications, Journal of Functional Analysis, Volume 286 (2024) no. 2, p. 110217 | DOI:10.1016/j.jfa.2023.110217
- Hasimoto frames and the Gibbs measure of the periodic nonlinear Schrödinger equation, Journal of Mathematical Physics, Volume 65 (2024) no. 2 | DOI:10.1063/5.0169792
- Lecture XIX: Heat Flow, Optimal Transport and Ricci Curvature, Lectures on Optimal Transport, Volume 169 (2024), p. 239 | DOI:10.1007/978-3-031-76834-7_19
- Geometry of vectorial martingale optimal transportations and duality, Mathematical Programming, Volume 204 (2024) no. 1-2, p. 349 | DOI:10.1007/s10107-023-01954-4
- Transportation on spheres via an entropy formula, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 5, p. 1467 | DOI:10.1017/prm.2022.54
- On computing discretized Ricci curvatures of graphs: Local algorithms and (localized) fine-grained reductions, Theoretical Computer Science, Volume 975 (2023), p. 114127 | DOI:10.1016/j.tcs.2023.114127
- Curvature-Dimension Condition, Comparison Finsler Geometry (2021), p. 269 | DOI:10.1007/978-3-030-80650-7_18
- Lecture 19: Heat Flow, Optimal Transport and Ricci Curvature, Lectures on Optimal Transport, Volume 130 (2021), p. 229 | DOI:10.1007/978-3-030-72162-6_19
- Lagrangian calculus for nonsymmetric diffusion operators, Advances in Calculus of Variations, Volume 13 (2020) no. 4, p. 361 | DOI:10.1515/acv-2018-0001
- Gradient flows and Evolution Variational Inequalities in metric spaces. I: Structural properties, Journal of Functional Analysis, Volume 278 (2020) no. 4, p. 108347 | DOI:10.1016/j.jfa.2019.108347
- Equality in the logarithmic Sobolev inequality, manuscripta mathematica, Volume 162 (2020) no. 1-2, p. 271 | DOI:10.1007/s00229-019-01134-9
- Permanental Point Processes on Real Tori, Theta Functions and Monge–Ampère Equations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 28 (2019) no. 1, p. 11 | DOI:10.5802/afst.1592
- WITHDRAWN: One version of the Prékopa-Leindler type inequality for the Sugeno integral, Fuzzy Sets and Systems (2019), p. 107670 | DOI:10.1016/j.fss.2019.05.008
- Optimal transportation with constant constraint, Involve, a Journal of Mathematics, Volume 12 (2019) no. 1, p. 1 | DOI:10.2140/involve.2019.12.1
- Sectional and intermediate Ricci curvature lower bounds via optimal transport, Advances in Mathematics, Volume 329 (2018), p. 781 | DOI:10.1016/j.aim.2018.01.024
- On the Set of Points of Smoothness for the Value Function of Affine Optimal Control Problems, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 2, p. 649 | DOI:10.1137/17m1123948
- Harmonic Measures on the Sphere via Curvature-Dimension, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 26 (2017) no. 2, p. 437 | DOI:10.5802/afst.1540
- Yet Another Proof of the Entropy Power Inequality, IEEE Transactions on Information Theory, Volume 63 (2017) no. 6, p. 3595 | DOI:10.1109/tit.2017.2676093
- Estimates of eigenvalues of the Laplacian by a reduced number of subsets, Israel Journal of Mathematics, Volume 217 (2017) no. 1, p. 413 | DOI:10.1007/s11856-017-1453-7
- Ricci Curvature, Isoperimetry and a Non-additive Entropy, Entropy, Volume 17 (2015) no. 3, p. 1278 | DOI:10.3390/e17031278
- Metric Perspectives of the Ricci Flow Appliedto Disjoint Unions, Analysis and Geometry in Metric Spaces, Volume 2 (2014) no. 1 | DOI:10.2478/agms-2014-0011
- Optimal Transportation and Functional Inequalities, Analysis and Geometry of Markov Diffusion Operators, Volume 348 (2014), p. 433 | DOI:10.1007/978-3-319-00227-9_9
- Ricci curvature, entropy, and optimal transport, Optimal Transport (2014), p. 145 | DOI:10.1017/cbo9781107297296.008
- A transport inequality on the sphere obtained by mass transport, Pacific Journal of Mathematics, Volume 268 (2014) no. 1, p. 23 | DOI:10.2140/pjm.2014.268.23
- Concentration, Ricci Curvature, and Eigenvalues of Laplacian, Geometric and Functional Analysis, Volume 23 (2013) no. 3, p. 888 | DOI:10.1007/s00039-013-0215-x
- Displacement interpolations from a Hamiltonian point of view, Journal of Functional Analysis, Volume 265 (2013) no. 12, p. 3163 | DOI:10.1016/j.jfa.2013.08.022
- A Curved Brunn–Minkowski Inequality on the Discrete Hypercube, Or: What Is the Ricci Curvature of the Discrete Hypercube?, SIAM Journal on Discrete Mathematics, Volume 26 (2012) no. 3, p. 983 | DOI:10.1137/11085966x
- Задача Монжа - Канторовича: достижения, связи и перспективы, Успехи математических наук, Volume 67 (2012) no. 5, p. 3 | DOI:10.4213/rm9490
- Finsler interpolation inequalities, Calculus of Variations and Partial Differential Equations, Volume 36 (2009) no. 2, p. 211 | DOI:10.1007/s00526-009-0227-4
- On the role of convexity in isoperimetry, spectral gap and concentration, Inventiones mathematicae, Volume 177 (2009) no. 1, p. 1 | DOI:10.1007/s00222-009-0175-9
- ℒ-optimal transportation for Ricci flow, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2009 (2009) no. 636 | DOI:10.1515/crelle.2009.083
- Gradient estimates of Poisson equations on Riemannian manifolds and applications, Journal of Functional Analysis, Volume 257 (2009) no. 12, p. 4015 | DOI:10.1016/j.jfa.2009.07.013
- Modified Logarithmic Sobolev Inequalities and Transportation Cost Inequalities in ℝ n, Potential Analysis, Volume 31 (2009) no. 2, p. 183 | DOI:10.1007/s11118-009-9131-y
- Mass Transport and Variants of the Logarithmic Sobolev Inequality, Journal of Geometric Analysis, Volume 18 (2008) no. 4, p. 921 | DOI:10.1007/s12220-008-9039-6
- Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 3, p. 1104 | DOI:10.1137/08071346x
- Gradient estimates for potentials of invertible gradient–mappings on the sphere, Calculus of Variations and Partial Differential Equations, Volume 26 (2006) no. 3, p. 297 | DOI:10.1007/s00526-006-0006-4
Cité par 37 documents. Sources : Crossref