@article{TSG_2003-2004__22__9_0, author = {Rigot, S\'everine}, title = {Transport optimal de mesure dans le groupe de {Heisenberg}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {9--23}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {22}, year = {2003-2004}, mrnumber = {2136132}, zbl = {1065.43012}, language = {fr}, url = {http://www.numdam.org/item/TSG_2003-2004__22__9_0/} }
TY - JOUR AU - Rigot, Séverine TI - Transport optimal de mesure dans le groupe de Heisenberg JO - Séminaire de théorie spectrale et géométrie PY - 2003-2004 SP - 9 EP - 23 VL - 22 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_2003-2004__22__9_0/ LA - fr ID - TSG_2003-2004__22__9_0 ER -
Rigot, Séverine. Transport optimal de mesure dans le groupe de Heisenberg. Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 9-23. http://www.numdam.org/item/TSG_2003-2004__22__9_0/
[1] Lecture notes on optimal transport problems, Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003,1-52. | MR | Zbl
,[2] Existence and stability results in the L1 theory of optimal transportation, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., vol. 1813, Springer, Berlin, 2003,123-160. | MR | Zbl
and ,[3] Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208-2 ( 2004), 261-301. | Zbl
and ,[4] The tangent space in sub-Riemannian geometry, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, 1-78. | Zbl
,[5] Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris, Sér I Math., 305 ( 1987), 805-808. | Zbl
,[6] Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 ( 1991), 375-417. | Zbl
,[7] Partial Differential Equations and Monge-Kantorovich Mass Transfer, Current Developments in Mathematics, 1997, 65-126. | Zbl
,[8] An elementary proof of the polar factorization theorem for fonctions, Arch.Rat. Mech.Anal., 128 ( 1994), 381-399. | MR | Zbl
,[9] The geometry of optimal transportation, Acta Math., 177 ( 1996), 113-161. | MR | Zbl
and ,[10] Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certainsgroupes nilpotents, Acta Math. 139-(1,2) ( 1977), 95-153. | MR | Zbl
,[11] Structures métriques pour les variétés riemaniennes, CEDIC, Paris, 1981 | MR | Zbl
,[12] Carnot-Carathéodory spaces seen from within, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, 79-323. | MR | Zbl
,[13] Subelliptic, second order differential operators, in Complex analysis, III (College Park, Md, 1985-86), 46-77, Lecture Notes in Math., 1277, Springer, Berlin, 1987. | MR | Zbl
and ,[14] Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 ( 2001), 589-608. | MR | Zbl
,[15] Some properties of Carnot-Carathéodory balls in the Heisenberg group, Rend. Mat.Acc. Lincei 11( 2000), 155-167. | EuDML | MR
,[16] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129-1 ( 1989), 1-60. | MR | Zbl
,[17] Mass transportation problems, Vol I : Theory, Vol. II : Applications. Probability and its applications, Springer, 1998. | MR | Zbl
and ,[18] Mass transportation in groups of type H, preprint. | MR | Zbl
,[19] Topics in mass transportation, Graduate Studies in Mathematics, vol. 58, American Mathematica! Society, Providence, RI, 2003. | MR | Zbl
,