Transport optimal de mesure dans le groupe de Heisenberg
Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 9-23.
@article{TSG_2003-2004__22__9_0,
     author = {Rigot, S\'everine},
     title = {Transport optimal de mesure dans le groupe de {Heisenberg}},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {9--23},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     year = {2003-2004},
     mrnumber = {2136132},
     zbl = {1065.43012},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_2003-2004__22__9_0/}
}
TY  - JOUR
AU  - Rigot, Séverine
TI  - Transport optimal de mesure dans le groupe de Heisenberg
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2003-2004
SP  - 9
EP  - 23
VL  - 22
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_2003-2004__22__9_0/
LA  - fr
ID  - TSG_2003-2004__22__9_0
ER  - 
%0 Journal Article
%A Rigot, Séverine
%T Transport optimal de mesure dans le groupe de Heisenberg
%J Séminaire de théorie spectrale et géométrie
%D 2003-2004
%P 9-23
%V 22
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_2003-2004__22__9_0/
%G fr
%F TSG_2003-2004__22__9_0
Rigot, Séverine. Transport optimal de mesure dans le groupe de Heisenberg. Séminaire de théorie spectrale et géométrie, Tome 22 (2003-2004), pp. 9-23. http://www.numdam.org/item/TSG_2003-2004__22__9_0/

[1] L. Ambrosio, Lecture notes on optimal transport problems, Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003,1-52. | MR | Zbl

[2] L. Ambrosio and A. Pratelli, Existence and stability results in the L1 theory of optimal transportation, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., vol. 1813, Springer, Berlin, 2003,123-160. | MR | Zbl

[3] L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208-2 ( 2004), 261-301. | Zbl

[4] A. Beliaïche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, 1-78. | Zbl

[5] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris, Sér I Math., 305 ( 1987), 805-808. | Zbl

[6] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 ( 1991), 375-417. | Zbl

[7] L.C. Evans, Partial Differential Equations and Monge-Kantorovich Mass Transfer, Current Developments in Mathematics, 1997, 65-126. | Zbl

[8] W. Gangbo, An elementary proof of the polar factorization theorem for fonctions, Arch.Rat. Mech.Anal., 128 ( 1994), 381-399. | MR | Zbl

[9] W. Gangbo and R.J. Mccann, The geometry of optimal transportation, Acta Math., 177 ( 1996), 113-161. | MR | Zbl

[10] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certainsgroupes nilpotents, Acta Math. 139-(1,2) ( 1977), 95-153. | MR | Zbl

[11] M. Gromov, Structures métriques pour les variétés riemaniennes, CEDIC, Paris, 1981 | MR | Zbl

[12] M. Gromov, Carnot-Carathéodory spaces seen from within, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, 79-323. | MR | Zbl

[13] D. Jerison and A. Sanchez Calle, Subelliptic, second order differential operators, in Complex analysis, III (College Park, Md, 1985-86), 46-77, Lecture Notes in Math., 1277, Springer, Berlin, 1987. | MR | Zbl

[14] R.J. Mccann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 ( 2001), 589-608. | MR | Zbl

[15] R. Monti, Some properties of Carnot-Carathéodory balls in the Heisenberg group, Rend. Mat.Acc. Lincei 11( 2000), 155-167. | EuDML | MR

[16] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129-1 ( 1989), 1-60. | MR | Zbl

[17] S.T. Rachev and L. Rüschendorf, Mass transportation problems, Vol I : Theory, Vol. II : Applications. Probability and its applications, Springer, 1998. | MR | Zbl

[18] S. Rigot, Mass transportation in groups of type H, preprint. | MR | Zbl

[19] C. Villani, Topics in mass transportation, Graduate Studies in Mathematics, vol. 58, American Mathematica! Society, Providence, RI, 2003. | MR | Zbl