Two lectures on spectral invariants for the Schrödinger operator
Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000), pp. 77-107.
@article{TSG_1999-2000__18__77_0,
     author = {Novitskii, Mikhail V.},
     title = {Two lectures on spectral invariants for the {Schr\"odinger} operator},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {77--107},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {18},
     year = {1999-2000},
     mrnumber = {1812214},
     zbl = {0973.35145},
     language = {en},
     url = {http://www.numdam.org/item/TSG_1999-2000__18__77_0/}
}
TY  - JOUR
AU  - Novitskii, Mikhail V.
TI  - Two lectures on spectral invariants for the Schrödinger operator
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1999-2000
SP  - 77
EP  - 107
VL  - 18
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_1999-2000__18__77_0/
LA  - en
ID  - TSG_1999-2000__18__77_0
ER  - 
%0 Journal Article
%A Novitskii, Mikhail V.
%T Two lectures on spectral invariants for the Schrödinger operator
%J Séminaire de théorie spectrale et géométrie
%D 1999-2000
%P 77-107
%V 18
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_1999-2000__18__77_0/
%G en
%F TSG_1999-2000__18__77_0
Novitskii, Mikhail V. Two lectures on spectral invariants for the Schrödinger operator. Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000), pp. 77-107. http://www.numdam.org/item/TSG_1999-2000__18__77_0/

[1] Akhiezer, N.I.: Classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. | MR | Zbl

[2] Conway, J.H., Sloane, N.J.A.: Four dimensional lattices with the same theta series, Intern. Math. Research Notes 4, 93-96 ( 1992). | MR | Zbl

[3] Craig, W.: The trace formula for the Schrödinger operator, Comm. Math. Phys. 126, 379-407 ( 1988). | MR | Zbl

[4] Eskin, G., Ralston, J. and Trubowitz, E.: Isospectral periodic potentials on Rn. SIAM-AMS Proceedings, 14, 91-96 ( 1984). | MR | Zbl

[5] Eskin, G., Ralston, J. and Trubowitz, E.: The multidimensional inverse spectral problem with periodic potential, Contemp. Math., 27, 45-56 ( 1984). | MR | Zbl

[6] Eskin, G., Ralston, J. and Trubowitz, E.: On isospectral periodic potentials in Rn., Comm. on Pure and Appl. Math., 237, 647-676 ( 1984). | MR | Zbl

[7] Eskin, G., Ralston, J. and Trubowitz, E.: On isospectral periodic potentials in Rn.II, Comm. on Pure and Appl. Math., 237, 715-753 ( 1984). | MR | Zbl

[8] Eskin, G.: Inverse spectral problem for the Schrödinger operator with periodic magnetic and electric potentials, Séminaire sur les Équations aux Dérivées Partielles, 1988-1989, Exp. No. XIII, 6pp., École Polytech., Palaiseau, 1989. | Numdam | MR | Zbl

[9] Eskin, G.: Inverse spectral problem for the Schrödinger operator with periodic vector potential, Comm. Math. Phys., 125, no.2, 263-300 ( 1989). | MR | Zbl

[10] Figotin, A. L., Pastur, L. A.: Spectra of random and almost periodic operators, Grundlehrer der Mathematischen Wissenschaften 297, Springer-Verlag, Berlin, 1992. | MR | Zbl

[11] Gardner, C., Gbeene, J., Kruskal, R., Miura, R.: Korteweg-de Vries equation and generalizations, VI, Methods for exact solution, Comm. Pure Appl. Math. 27,97-133 ( 1974). | MR | Zbl

[12] Gesztesy, F., Holden, H., Simon, B., Zhao, Z.: Trace formulas for multidimensional Schrödinger operators, J. Funct Anal. 141, No. 2,449- 465( 1996). | MR | Zbl

[13] Gordon, C.,S., Kappeler, T.: On isospectral potentil on tori, Duke Math. J. 63, No. 1, 217-233 ( 1991). | MR | Zbl

[14] Gordon, C.,S., Kappeler, T.: On isospectral potentil on flat tori II, Commun, in partial diff. equations 20, No. 3-4, 709-728 ( 1995). | MR | Zbl

[15] Johnson, R., Moser, J.: The rotation number for almost periodic potentials, Comm. Math. Phys. 84, 403-438 ( 1982). | MR | Zbl

[16] Kac, M.: Can you hear the shape of a drum ? Am. Math. Mon. 73, 1-23 ( 1966). | MR | Zbl

[17] Rappeler, T.: On isospectral potentil on a discrete lattice I, Duke Math. J. 57, No. 1, 135-150 ( 1988). | MR | Zbl

[18] Kappeler, T.: On isospectral potentil on a discrete lattice II, Adv. in Appl. Math. 9, No. 4,428-438 ( 1988). | MR | Zbl

[19] Kappeler, T.: Isospectral potentil on a discrete lattice III, Trans. Amer. Math. Soc. 314, No. 2, 815-824 ( 1989). | MR | Zbl

[20] Karpeshina, Y.E.: Perturbation theory for the Schrödinger operator with a periodic potential, LNM 73, 1-23 ( 1966). | Zbl

[21] Kotany, S.: Ljaponov exponents and spectra for one-dimensional random Schrödinger operators, AMS Conference on Random Matrices and Their Applications, Stochastic Analysis( K. Ito, ed.), North Holland, Amsterdam, 1984, 225-248. | Zbl

[22] Lax, P.: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure and Appl. Math., 21, 467-490 ( 1968). | MR | Zbl

[23] Lax, P.: Periodic solutions of the KdV equation, Commun. Pure and Appl. Math., 38, 141-188 ( 1975). | MR | Zbl

[24] Lax, P.: Trace formulas for the Schrödinger operator, Commun. Pure and Appl. Math. 47, no.4, 503-512 ( 1994). | MR | Zbl

[25] Levitan, B.M.: Inverse Sturm-Liouville problem, VSP, Zeist, 1987. | MR | Zbl

[26] Marchenko, V.A.: Sturm- Liouville operators and applications, Operator theory: Advances and Applications 22, Birkhäuser Verlag, Basel-Boston, Mass., 1986. | MR | Zbl

[27] Marchenko, V.A, Ostrovskii, I.V.: A characterization of the Hill's operator, Math. USSR Sbornik 26, 493-554 ( 1975). | Zbl

[28] Mckean, H.P., Van Moerbeke, P.: Spectrum of Hill equation, Invent Math., 30, 217-274 ( 1975). | MR | Zbl

[29] Mckean, H.P., Trubowitz E.: Hill's operators and hyperelliptic function theory in the presence of infinitely many branch points, Comm. on pure and appl.math, 29, 143-226 ( 1976). | MR | Zbl

[30] Minakshisundaram, S., Pleijel, A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifold, Can. J. Math., 1, 242-256 ( 1949). | MR | Zbl

[31] Molchanov, S.A, Novitskii, M.V.: On spectral invariants of the Schrödinger operator on the torus, Uspekhi Math. Nauk, 38, no. 5 (233), 135-136 (Russian).

[32] Molchanov, S.A, Novitskii, M.V.: On spectral invariants of the Schrödinger operator on the torus, Dokl. Acad. Nauk SSSR, 286, n. 2, 287-291 ( 1986) (Russian); English translation: Sov. Math. Doklady, 33, 82-85 ( 1986). | MR | Zbl

[33] Molchanov, S.A, Novitskii, M.V.: Spectral invariants of the Schrödinger operator on the torus, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 34-39 ( 1986) (Russian). | MR | Zbl

[34] Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of solitons, Nauka, Moskow, 1980; English transl., Plenum Press, New York, 1984. | MR | Zbl

[35] Novitskii, M.V. : On the recovery from a collection of polynomial conservation laws, of action variables for KdV equation in the class of almost periodic function, Math. SSSR Sbornik, 56, n.2, 417-428 ( 1985) (Russian, English translation). | Zbl

[36] Novitskii, M.V.: Equivalent system of spectral invariant of the Hill operator, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 40-47 ( 1986) (Russian). | MR | Zbl

[37] Novitskii, M.V.: Spectral invariants of the Schrödinger operator on the torus with a coupling constant potential, Operators in Functional Spaces and Problems of Function Theory, Kiev, Naukova Dumka, 27-32 ( 1987) (Russian). | MR | Zbl

[38] Novitskii, M.V.: On complete description of the fundamental discrete series of the spectral invariants of the Hill operator, Theory of Functions, Functional Analysis and Applications, Kharkov, 56 ( 1991) 30-35 (Russian); English translation: Journal of Mathematical Sciences, 76, no.4, 2464-2468 ( 1995). | MR | Zbl

[39] Novitskii, M.V.: On a complete description of the principal discrete series of spectral invariants of the Hills operator, Operator Theory: Advances and Applications, 46, Basel, Birkhauser Verlag, 115-117 ( 1990). | MR | Zbl

[40] Novitskii, M.V.: Quasianalytic classes and isospectral Hill's operators, Advances in Soviet Mathematics, Spectral operator theory and related topics, 19, 27-39 ( 1994). | MR | Zbl

[41] Novitskii, M.V.: Spectral invariants of the Schrödinger operator families, inverse problems and related functionals, Doctoral theses, Kharkov, 1997. (see Appendix on http::www-fourier.ujf-grenoble.fr/SEMINAIRES/STSG)

[42] Reed, M., Simon, B.: Methods of modern mathematical physics, IV Analysis of operators, New York-London, Academic Press, 1972. | MR | Zbl

[43] Skriganov, M.M.: The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., 80, no. l, 107-121 ( 1985). | MR | Zbl

[44] Sunada, T.: Trace formula for Hill's operators, Duke Mathematical Journal, 47, no.3, 529-546 ( 1980). | MR | Zbl

[45] Titchmarsh, E.C.: Eigenfunction expansions associated with second-order differential equation II, Clarendon Press, Oxford, 1958. | MR | Zbl

[46] Trubowitz, E.: The inverse problem with periodic potential, Commun.on pure and appl. math., 30, 321-337 ( 1977). | MR | Zbl

[47] Veliev, O.: Asymptotic formulas for the eigenvalues of the periodic Schrödinger operator, and the Bethe-Sommerfeld conjecture (Russian), Funktsional. Anal, i Pril., 21, no.2, 1-15 ( 1987). | MR | Zbl