@article{TSG_1999-2000__18__17_0, author = {Bergeron, Nicolas}, title = {Sur l'homologie et le spectre des vari\'et\'es hyperboliques}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {17--26}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, year = {1999-2000}, mrnumber = {1812207}, zbl = {0980.58022}, language = {fr}, url = {http://www.numdam.org/item/TSG_1999-2000__18__17_0/} }
TY - JOUR AU - Bergeron, Nicolas TI - Sur l'homologie et le spectre des variétés hyperboliques JO - Séminaire de théorie spectrale et géométrie PY - 1999-2000 SP - 17 EP - 26 VL - 18 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_1999-2000__18__17_0/ LA - fr ID - TSG_1999-2000__18__17_0 ER -
Bergeron, Nicolas. Sur l'homologie et le spectre des variétés hyperboliques. Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000), pp. 17-26. http://www.numdam.org/item/TSG_1999-2000__18__17_0/
[1] Combinatorial cubings, cusps, and the dodecahedral knots, Topology '90 (Columbus, OH, 1990), 17-26, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992. | MR | Zbl
and ,[2] Geodesic surfaces in knot complements, Experiment Math. 6 ( 1997), n° 2,137-150. | MR | Zbl
and ,[3] The virtual ℤ-representability of certain 3-manifold groups, Proc. Amer. Math. Soc. 103 ( 1988), n° 3, 996-998. | MR | Zbl
,[4] Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, à paraître dans L'Enseignement Mathématique. | Zbl
,[5] Geometry and spectra of compact Riemann surfaces, Birkhäuser ( 1992). | MR | Zbl
,[6] Compact Clifford-Klein forms of symmetric spaces, Topology 2 ( 1963), 111-122. | MR | Zbl
,[7] Regular honeycombs in hyperbolic space, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 155-169. Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1956. | MR | Zbl
,[8] Non-arithmetic groups in Lobachevsky spaces, Publ. Math. I. H. E. S., pp. 93-103 ( 1988). | Numdam | Zbl
and ,[9] Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2), 27 ( 1983), 345-355. | MR | Zbl
,[10] On knots that are universal, Topology 24 ( 1985), 499-504. | MR | Zbl
, and ,[11] Virtual Betti numbers of some hyperbolic 3-manifolds, A fête of topology, 417-437, Academic Press, Boston, MA, ( 1988). | MR | Zbl
and ,[12] Immersions and embeddings of totally geodesic surfaces, Buil. London Math. Soc. 19, pp. 481-484( 1987). | MR | Zbl
,[13] Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1, pp. 71-82 ( 1996). | MR | Zbl
,[14] Fondations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer-Verlag ( 1994). | MR | Zbl
,[15] Totally geodesic surfaces in hyperbolic 3-manifotds, Proc. Edimburgh Math. Soc. ( 1991) 34, 77-88. | MR | Zbl
,[16] Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J. ( 1992) 65, 215-228. | MR | Zbl
,[17] Subgroups of surface groups are aimost geometric, J. London Math. Soc. 17 (2) ( 1978) 555-565. | MR | Zbl
,[18] On discontinuous groups in higher-dimensional symmetric spaces, in: Contributions to Function Theory, edited by K. Chandrasekharan, Tata Inst. of Fund. Research, Bombay ( 1960), 147-164. | MR | Zbl
,[19] On isospectral locally symmetric spaces and a theorem of von Neumann, Duke Math. J. ( 1989) 59, 289-294; Correction, Duke Math. J. ( 1990) 60, 561. | MR | Zbl
,[20] Variétés Riemanniennes isospectrales et non isométriques, Ann. of Math. ( 1980) 112, 21-32. | MR | Zbl
,[21] Geometry II, Encyclopedia of Mathematical Sciences, 29, Springer-Verlag ( 1993). | MR | Zbl
,