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TYPICAL SURFACES AND RANDOM GRAPHS

Robert BROOKS*

In this talk, we describe an approach to the problem: What does a typical Riemann
surface of large genus look like geometrically? In large part, this is joint work with Eran
Makover.

As various parts ofthis program have been described elsewhere ([PS], [SGB], [LFE],[RCRS]),
we will take the present occasion to describe some of the motivating ideas behind the
program. See [FERS] for an announcement of results in this direction.

A central problem, which we have attacked from a number of points of view, is to
corne to some geometrical understanding of the following theorem, due to Selberg:

THEOREM 1 ([Sel]). — LetT= PSL(2,1), and let

Then the first eigenvalue A \ (H2 /Tk) satisfies

Ai(H2/Ijt)

The number 3/16 has been improved by Luo, Rudnick, and Sarnak [LRS], but we
will not be interested hère in précise constants. Rather, we will say that Ai of a Riemann
surface is large if it is bounded below by a positive constant independent of the genus.

A natural question arising from Selberg's Theorem is whether the phenomenon of
large first eigenvalue is something which is special for arithmetically defined surfaces, or
whether it is a property enjoyed by "typical" Riemann surfaces, of which such arithmeti-
cally defined surfaces just happen to be good examples.
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To understand this question, we may perform the following thought experiment:
let Rg be a Riemann surface whose geometrie description is like our usual picture of a
Riemann surface:

constant

Figure 1 : The surface Rg

We have drawn on Rg a curve which divides it into two pièces.

Instead of trying to visualize the first eigenvalue, we instead consider the Cheeger

= i n f length(C)
c min(area(>l),area(B))'

where C is a (possibly disconnected) curve which splits R into two parts A and B.

It is then easy to see that as g gets large, the Cheeger constant h(Rg) tends to 0, as
the surface is divided into two pièces of equal size by a curve such as the curve in Figure
1, whose length is fixed independent of the genus.

Now let us divide the surface in half, as in Figure 2 below, and then glue the legs of
the top half randomly to legs in the bottom half. It is easy to convince oneself that for a
suitably random gluing of the legs, there is no longer any convenient way to divide the
surface in half by a relatively short curve.

One would like to believe that a typical Riemann surface looks more like one of the
random gluings than like Rg itself. The problem in making this précise is two-fold:

(i) First of all, it would seem to be difficult to describe processes such as the random
gluings in terms of, say, Fenchel-Nielsen coordinates. In gênerai, it would seem to
be difficult to use Fenchel-Nielsen coordinates to control the spectral geometry of
a surface of large genus.
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Figure 2: A random gluing

(ii) Secondly, the gluing process described above seems to rest on a combinatorial struc-
ture which would seem to be absent in a typical Riemann surface. How can one
describe a typical Riemann surface in a way which reflects a combinatorial struc-
ture analogous to this?

Both of these difficultés are met by the following construction: let G be a finite triva-
lent graph, and O an orientation of G- i.e., for each vertex vofGt0 gives a cyclic ordering
of the vertices emanating from v.

We may then associate to the pair ( G, ö) two Riemann surfaces S°(G,0) and Sc ( G, O ),
as follows: S°(G, O) is constructed from G by pasting one hyperbolic idéal triangle for
each vertex, and gluing triangles together according to the graph and orientation, see
[TS] for details. S°(G, 0) is then a finite-area Riemann surface, whose geometry is well-
controlled by the pair ( G, 0 ). Sc ( G, 0 ) is then the conformai compactification of S ° ( G, 0).

The two problems mentioned above can be rephrased in the following way:

QUESTION 1. — To what extent can we transfer the good geometrie control that we
have on the surfaces S°(G, O) to the surfaces Sc(Gf ö) ?

QUESTION 2. — To what extent are the surfaces SC(G, 0) typical Riemann surfaces?

Question 2 is answered by the following theorem, which is an easy conséquence of
the Belyi Theorem [Be]:

THEOREM 2. — IfS is any compact Riemann surface, then for anys, there is a surface
oftheform SC(G, 0) is s-close to S.
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Here, "f-close" may be taken in any convenient metric on moduli space, for instance
the Teichmüller metric. Thus, the surfaces SC(G, ó) are a dense set of surfaces in the
moduli space of all surfaces.

The answer to Question 1 is somewhat more complicated. It is not hard to see that
the surfaces S°{G,û) and Sc(G,ô) might be quite different geometrically. For instance,
S°(G, û) always carries a complete hyperbolic metric, but SC(G, Û) might be a sphère.
However, the theorem of [PS] guarantees that this cannot happen when the cusps are
large:

THEOREM 3 ([PS]). — For any £, there exists an L with the following property: ifS°
is aflnite-area Riemann surface, all ofwhose cusps have length geL> then outside ofcusp
neighborhoods, depending only on L, the hyperbolic metrics dsQ on S° and ds^ on its
conformai compactification Sc satisfy:

The proof is an application of the Ahlfors-Schwarz Lemma [A], together with playing
with differential inequalities.

When the condition of large cusps is satisfied, Theorem 3 can be used to show that
the geometrie control one has over S°(G, û) transfers to control over SC(G, 0). Further-
more, the large cusps condition has a simple graph-theoretic interprétation which is ea-
sily studied.

In [SGB] and [RCRS], we use the Bollobas model of random regular graphs [Bol],
[Bo2] to study the large cusps condition. Let ®* dénote the finite set of 3-regular graphs
on 2k vertices, and &£ the finite set of oriented 3-regular graphs on 2k vertices. Then:

THEOREM 4 ([SGB]). — With probability - 1 as k — oo,a graph selected randomly
from (Sk carries an orientation û such that all the cusps ofS°(G, 6) are large.

THEOREM 5 ([RCRS]). — There is a positive constant Q independent ofk such that,
for a pair (G, O) randomly chosen from <&%, S0(G, 6) has large cusps with probablity at
least Ci.

Theorems 4 and 5 can be used to construct compact surfaces which enjoy proper-
ties enjoyed by random 3-regular graphs. In particular, Theorem 5 shows that there is a
constants Ci such that a randomly chosen surface Sc(G,û) satisfies

with probablity at least Q.
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