Einstein manifolds, volume rigidity and Seiberg-Witten theory
Séminaire de théorie spectrale et géométrie, Tome 17 (1998-1999), pp. 163-184.
@article{TSG_1998-1999__17__163_0,
     author = {Sambusetti, Andrea},
     title = {Einstein manifolds, volume rigidity and {Seiberg-Witten} theory},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {163--184},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {17},
     year = {1998-1999},
     mrnumber = {1752705},
     zbl = {0977.53039},
     language = {en},
     url = {http://www.numdam.org/item/TSG_1998-1999__17__163_0/}
}
TY  - JOUR
AU  - Sambusetti, Andrea
TI  - Einstein manifolds, volume rigidity and Seiberg-Witten theory
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1998-1999
SP  - 163
EP  - 184
VL  - 17
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_1998-1999__17__163_0/
LA  - en
ID  - TSG_1998-1999__17__163_0
ER  - 
%0 Journal Article
%A Sambusetti, Andrea
%T Einstein manifolds, volume rigidity and Seiberg-Witten theory
%J Séminaire de théorie spectrale et géométrie
%D 1998-1999
%P 163-184
%V 17
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_1998-1999__17__163_0/
%G en
%F TSG_1998-1999__17__163_0
Sambusetti, Andrea. Einstein manifolds, volume rigidity and Seiberg-Witten theory. Séminaire de théorie spectrale et géométrie, Tome 17 (1998-1999), pp. 163-184. http://www.numdam.org/item/TSG_1998-1999__17__163_0/

[1] M. Anderson - Einstein metrics and metrics with bounds on Ricci curvature, in International Congress of Mathematicians 1, Birkhäuser, Zurich ( 1994), 443-452. | MR | Zbl

[2] T. Aubin - Équations du type Monge-Ampère sur les variétés kahleriennes compactes, C. R. Acad. Sci. Paris, 283 ( 1976), 119-121. | MR | Zbl

[3] M. Berger - Rapport sur les variétés d'Einstein, in "Analyse surles variétés", Metz, 1979, Astérisque 80 ( 1980), 5-19. | Numdam | MR | Zbl

[4] A.L. Besse- Einstein manifolds, Ergebnisse der Math. Springer-Verlag, Berlin-New York ( 1987). | MR | Zbl

[5] A.L. Besse - Géométrie riemannienne en dimension 4, Séminaire Arthur Besse, Textes Mathématiques, Cedic/Nathan.

[6] G. Besson, G. Courtois, S. Gaulot - Entropie et rigidité des espaces localement symétriques de courbure strictement négative, GAFA. 5 (1995), 731-799. | MR | Zbl

[7] G. Besson, G. Courtois, S. Gallot - Lemme de Schwarz réel et applications géométriques, Prépublication N.98-7 de l'École Polytechnique (Palaiseau, juin 1998). | MR

[8] G. Besson, G. Courtois, S. Gallot- A real Schwarz lemma and some applications, Rend. Mat., Serie VII, Vol 18, Roma ( 1998), 381-410. | MR | Zbl

[9] E. Calabi- The space of Kahler metrics, Proc. Congress Math. Amsterdam, Vol. 2 ( 1954), 206-207.

[10] Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi. Séminaire Palaiseau, Astérisque 58 ( 1978). | MR | Zbl

[11] A. Derdzinski - Einstein metrics indimension 4, to appear.

[12] K. Fukaya - Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math. 18, Academic Press, Boston ( 1990), 143-238. | MR | Zbl

[13] S. Gallot - Volume, courbure de Ricci et convergence des variétés d'après T.H. Colding et Cheeger- Colding. Séminaire Bourbaki n.835 ( 1997-98). | Numdam | Zbl

[14] M. Gromov - Structures métriques pour les variétés Riemanniennes, Cedic/Fernand Nathan, Paris ( 1981). | MR | Zbl

[15] M. Gromov- Volume and bounded cohomology, Publ. Math.Inst. Hautes Étud. Sci. 56 ( 1981), 213-307. | Numdam | MR | Zbl

[16] E. Hebey, M. Herzlich - Harmonie coordinates, harmonie radius and convergence of Riemannian manifolds, Rend. Mat. Serie VII, Vol.17, Roma ( 1997), 569-605. | MR | Zbl

[17] S. Helgason - Differential geometry. Lie groups and symmetrie spaces, Pure and Appl. Mathematics, Academie Press, New York-London ( 1978). | MR | Zbl

[18] S. Kobayashi, K. Nomizu - Foundations of differential geometry Vol l/2, Interscience tracts in Pure and Appl. Math. 15, Interscience Publishers, NewYork-London ( 1963). | MR | Zbl

[19] C. Lebrun - Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 ( 1995), 1-8. | MR | Zbl

[20] C. Lebrun - Polarized 4-manifolds, extremal kàhler metrics, and Seiberg-Witten theory, Math. Res. Lett. 2 ( 1995), 653-662. | MR | Zbl

[21] C. Lebrun - Four-manifolds without Einstein metrics, Math. Res. Lett. 2 ( 1996), 133-147. | MR | Zbl

[22] T. Mabuchi - Einstein metrics in complex geometry: an introduction, Kähler metrics and moduli spaces, Adv.Stud.Pure Main. 18-11, Academie Press, Boston ( 1990), 1-10. | MR | Zbl

[23] N. Mok - Metric rigid ity tkeorems on hermitian locally symmetrie manifolds, Series in Pure Math. 6, World Scientific. | Zbl

[24] J.D. Moore- Lectures Notes on Seiberg-Witten invariants, 241 ( 1995).

[25] J.W. Morgan - The Seiberg-Witten equations and applications to the topology of smooth 4-manifolds, Mathematical Notes 44, Princeton University Press ( 1996). | MR | Zbl

[26] D. Mumford - An algebraic surface with K ample, (K2 ) = 9, pg = q « 0, Amer. J. Math. 101 ( 1979), 233-244. | MR | Zbl

[27] W. Barth, C. Peters, A. Van De Ven - Compact complex surfaces, Ergebnisse der Math. Springer-Verlag, Berlin-New York ( 1984). | MR | Zbl

[28] A.Z. Petrov- Einstein spaces, english translation of Prostranstva Eynshteyna (Fizmatlit, Moscow, 1961 ), Pergamon Press, Oxford-New York ( 1969). | MR | Zbl

[29] A. Sambusetti - An obstruction to the existence of Einstein metrics on 4-manifolds, Math. Ann. 311 ( 1998), 533-548. | MR | Zbl

[30] A. Sambusetti - On minimal entropy and stability, to appear in Geometriae Dedicata. | MR | Zbl

[31] A. Sambusetti - Minimal entropy and simplicial volume, manuscripta math. 99 ( 1999), 541-560. | MR | Zbl

[32] C. Taubes- The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 ( 1995), 221-238. | MR | Zbl

[33] E. Witten- Monopoles and 4-manifolds, Math. Res. Lett. 1 ( 1994), 764-796. | MR | Zbl

[34] S.T. Yau - On the Ricci curva ture of a compact Kähler manifold and the complex Monge-Ampere equation J, Comm. Pure and Appl. Math. XXXI ( 1978), 339-411. | MR | Zbl

[35] S.T. Yau - A general Schwarz lemma for kähler manifolds, Amer. J. Math. 100 ( 1978), 197-203. | MR | Zbl