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BENDING INVARIANTS FOR HYPERSURFACES

Rabah SOUAM

A very long-standing problem in classical differential geometry is the bendability
problem for compact hypersurfaces in euclidean spaces. By a hypersurface we mean a
connected Riemannian w-manifold {n > 2) which is C2-isometrically immersed in Kn+1.
A hypersurface M is said to be bendable if it can be isometrically and non-trivially de-
formed in K"+J. It is said rigid if every hypersurface which is C2 isometric to M is congru-
ent to M (i.e is obtained by applying an ambient rigid motion). The bendability problem
is to décide whether there exist bendable compact hypersurfaces or not. Clearly rigidity
implies unbendability. Only few results are known in particular cases. Cohn-Vossen has
proved that smooth compact convex surfaces in M3 are rigid. In higher dimensions n > 3,
Béez has proved rigidity under the hypothesis that the second fundamental form has every-
where rank at least 3, and Sacksteder [Sac] proved that complete convex hypersurfaces are
rigid provided the second fundamental form has rank at least 3 atsome point. We refer to
the book of M. Spivak [Spi] for an excellent account of the subject. The bendability prob-
lem has also been studied infinitesimally, locally and for complete hypersurfaces. More
results are known in these latter cases, we refer again to M. Spivak's book and to the more
recent survey of I. Sabitov [Sab]. In the piecewise-linear category, R. Connelly has given
an example of an embedded polyhedra in i?3 admitting non-trivial isometric déformations
(cf. [Co]).

In this paper, we are concerned with a closely related problem. We are interested
in geometrie quantities defined on the hypersurface which are extrinsic -that is, depend
on the way the surface is immersed in Mn+1 and not only on the metric on M- but are
invariant under isometric déformations of M. Results in this direction may be viewed as
unbendability results in a weak sense.

In order to state our main theorem we introducé some notations. Let M be a
compact oriented boundaryless manifold of dimension n and consider an immersion
<f> : M —> R"+1. We endow M with the metric induced by the euclidean one on E" + i .
Associated to the second fundamental form of <f> there are n invariants, namely, the ele-
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mentary symmetrie functions Sr of the principal curvatures k\, kz,... ,kn :

The r—mean curvature Hr of <f> is defined by (")Hr = Sr. So, for example, H\ is the mean
curvature, H2 the scalar curvature and Hn the Gauss-Kronecker curvature of <f>.

An isometric déformation of the immersion 4> is a C2 mapping: <t> : (-e, e) x M —»
Rn+1 suchthattf), : M —> Rw+1,r € (-e, e), defined by 4>t(p) = *(t,p),p € M, is an
isometric immersion and <f>0 = tf>. Dénote by dA the volume element on M.

Our main resuit is the following:

THEOREM. — For each r, 1 < r < n, the toraJ r—mean curvature JM HT dA, is
invariant under isometric déformations of the immersion <f>.

This result is due, for n = 2, to E Almgren and I. Rivin (Al-Ri] who first derived
a similar result for polyhedra and then extended it to smooth surfaces using geometrie
measure theory methods. Independently from our work, I. Rivin and J-M. Schlenker [Ri-Sc]
gave a more direct proof and proved the stronger result that the HT are pointwise invariant
for r > 2.

Proof. — Dénote, for each t, by Hr(t), the r—mean curvature of <£,. Since the
déformation is isometric the volume element of M is invariant under the déformation and
because the <pt satisfy the same hypothesis as <p it is sufficient to show that:

d

dt

which amounts to the same to show that:

f Hr(t)dA = 0

f Sr(t) dA = O

For this we need to know the derivative: S'r(0). Consider, for each t, a C1 unit field ,Nt,
normal to the immersion <pt and depending C1 on t. Dénote by Bt the shape operator, with
respect to JVfl associated to the immersion 4>t and caU D be the Levi-Civita connection on
RM+1. We have: Bt u = -DuNt, for u G TM. Also, dénote by Ç the variation vector field of
* , that is, Ç(p) = |y (p) | 0, and let V be the Levi-Civita connection on M. We have the
following formula (see e.g ÏRo], where the formula is derived for "normal" déformations
but the proof extends easily to gênerai ones):

(B'(o)u, v) = -<Vu7V'(o), v) - {DBul> v), u.vZTM (0)

In the above formula, TV' (0) dénotes the vector field j-( 7V(0) and it is tangent to M since Nt

is unitary for each t.

In order to go further, consider (after R. Reilly [Rei]) the Newton transformations
(or(0,2)tensors), Tr,0 < r < n, defined by Tr = S rId-S r - 1B + . . . ( - l ) rB r , or.induc-
tively, by To = ld, Tr = Sr ld -JB7r-i. These Newton transformations enjoy the following
properties (cf. [Rei] or [Ro]):
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(1) Trace(7» = ( n - r)Sr

(2) S'r = Trace(B'rr«i), the derivative being taken with respect to the parameter t of
the déformation.

(3) seen as (0,2) tensors, the Tr are divergence free.

By (0) and (2), we have, at each point p € M:

1=1 1=1

where the e, form an orthonormal basis of TPM. Now, the operator BTr-\ being symmet-
rie (it is a polynomial in the symmetrie operator E) we may choose an orthonormal basis
e\... en of eigenvectors of BTr-i. Moreover, since the déformation is isometric, we have:
<DUÇ, u) = 0, for every u € TM. Therefore the second sum in the right hand side of (2)
vanishes. It follows from (3) (see also [Ro] for a direct proof ) that:

For any vector field V on M :

Trace(u -* VTk{u)V) = Trace(u -> VuTk(V))

Therefore formula (4) becomes simply:

The result now follows from the divergence theorem. •

Remarks.

1) To treat the case of the mean curvature (r = 1) there is no need to introducé the
Newton transformations.

2) We have proved the theorem using only the fact that the variation is infinitesi-
mally isometric, that is, its variation vector field satisfies (Du^f u) = 0, for every u € TM.

3) The cases r even and r = n are obvious. Indeed, for r even, Hr is intrinsic as
it follows from Gauss équation (see e.g. [Lo]). For r = n, JM HndA is a homotopic in-
variant since Hn is the determinant of the Gauss mapping of <p and therefore fM HndA =
deg(N)cont deg(N) being the degree of the Gauss mapping and œn the volume of the
canonical unit n-sphère. Furthermore, if n is even, then in fact, fM HndA = \œnx{M)t

where x(M) is the Euler characteristic of M. On the other hand, it can be checked on the
standard example (and its obvious generalizations to higher dimensions) of a toplogical
sphère which admits two isometric and non-congruent embeddings in K3 (see ISpi], p.
307) that the total mean curvatures of odd order r, are extrinsic quantities.

4) In a gênerai ambient space with curvature tensor R, formulae (0) and (4) become:

(B'(o)u, v) = -(VuN'(o), v) - (DBut v) + ü(g, u,N, v), u,veTM

M t Tr-i(et),N.e,)
1=1 1=1

It therefore follows that the theorem is true, for r = 1, in Ricci-flat manifolds.
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5) Consider the case of a gênerai ambient space form Af£+\ of constant curvature
K. Call V the volume enclosed by the (closed and oriented) hypersurface M. Our theorem
extends and states that K V - fM Hi dA and JM Hri for r > 2, are invariant under isometric
déformations of S. Details can be found in [Sch-So].

6) A polyhedral version of our theorem is proved in [Sch-So). It is obtained as a
corollary of Schlàfli formulae of higher order generalizing the classical Schlàfli one.

Our next result is a conséquence of the theorem. An open question is to décide
whether the volume enclosed by a hypersurface in M"+1 is invariant under isometric dé-
formations (cf. [Sab]). The analoguous statement for closed polyhedra in K3 was proved
recently by I. Sabitov (see e.g. [CSW] and the références therein). The following corollary
(see also [Ri-Sch]) suggests that this should also be true for regular hypersurfaces. Dénote,
by <f>€(M)t the parallel hypersurface to 4>(M) at (the algebraic) distance e from 4>{M)t that
is<f>€(p) = 4>(p)+€N(p);p € M (it is an immersion for e smallenough). Dénote by Ve the
(algebraic) volume enclosed between <f> and <f>£. Note that (see the proof), in contrast with
the volume of a tube around <t>(M)t it is an extrinsic quantity. We then have the following:

COROLLARY. — The volume V€ (e smaü enough) is invariant under isometric dé-
formations of the immersion <j>.

Proof — We have:

V€

'[0,t]xM
= f

J[0,t]

where d V is the volume form on R"+1 and * : [o, e] x M —> Rn+1 is given by: *(s, p)
<t>(p) + eN(p). It is known (and can easily be checked) that:

JJ -ski)dAds.
i=i

Therefore:

and is hence invariant by the theorem. •
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