@article{TSG_1997-1998__16__33_0, author = {Ammann, Bernd}, title = {The {Dirac} operator on collapsing $S^1$-bundles}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {33--42}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {16}, year = {1997-1998}, zbl = {0935.58014}, language = {en}, url = {http://www.numdam.org/item/TSG_1997-1998__16__33_0/} }
TY - JOUR AU - Ammann, Bernd TI - The Dirac operator on collapsing $S^1$-bundles JO - Séminaire de théorie spectrale et géométrie PY - 1997-1998 SP - 33 EP - 42 VL - 16 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_1997-1998__16__33_0/ LA - en ID - TSG_1997-1998__16__33_0 ER -
Ammann, Bernd. The Dirac operator on collapsing $S^1$-bundles. Séminaire de théorie spectrale et géométrie, Tome 16 (1997-1998), pp. 33-42. http://www.numdam.org/item/TSG_1997-1998__16__33_0/
[1] A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus. Preprint 1998. | Zbl
, , ,[2] Spin-Strukturen und das Spektrum des Dirac-Operators, Dissertation, Universität Freiburg, ISBN 3-8265-4282-7, Shaker Verlag Aachen 1998.
,[3] The Dirac Operator on Nilmanifolds and Collapsing Circle Bundles, Ann. Global Anal. Geom. 16, 221-253 ( 1998). | MR | Zbl
, ,[4] Metrics with harmonic spinors, GAFA 6, 899-942 ( 1996). | MR | Zbl
,[5] Riemannian submersions with totally geodesic fibers, Illinois J. Math. 26, 151-200 ( 1982). | MR | Zbl
, ,[6] Convergence de variétés et convergence du spectre du Laplacien, Ann. Sc. Ec. Norm. Sup. 4e série 24, 507-518 ( 1991). | Numdam | MR | Zbl
, ,[7] Riemannian metrics with large λ1, Proc. Amer. Math. Soc. 122 no. 3, 905-906 ( 1994). | MR | Zbl
, ,[8] Zur Abhängigkeit des Dirac-Operators von der Spin-Strukturt, Colloq. Math. 48, 57-62 ( 1984). | MR | Zbl
,[9] Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87, 517-547 ( 1987). | MR | Zbl
,[10] Eigenvalues of the Laplacian and Riemannian submersions,Yokohama Math. J. 43 no. 1, 7-11 ( 1995). | MR | Zbl
, ,[11] Riemannian submersions which preserve the eigenforms of the Laplacian, III. J. Math. 40, 194-201 ( 1996). | MR | Zbl
, ,[12] Eigenvalues of the form valued Laplacian for Riemannian submersions, Proc. Amer. Math. Soc. 126 no. 6,1845-1850 ( 1998). | MR | Zbl
, , ,[13] Harmonic spinors, Adv. Math. 14, 1-55 ( 1974). | MR | Zbl
,[14] The topological spectrum of a smooth closed manifold, Ind. Univ. Math. J.44, no. 2, 511-534 ( 1995). | MR | Zbl
,